构建路由规则

一个 web 应用不同的路径会有不同的处理函数,路由就是根据请求的 URL 找到对应处理函数的过程

在执行查找之前,需要有一个规则列表,它存储了 url 和处理函数的对应关系。最容易想到的解决方案就是定义一个字典,key 是 url,value 是对应的处理函数。如果 url 都是静态的(url 路径都是实现确定的,没有变量和正则匹配),那么路由的过程就是从字典中通过 url 这个 key ,找到并返回对应的 value;如果没有找到,就报 404 错误。而对于动态路由,还需要更复杂的匹配逻辑。flask 中的路由过程是这样的吗?这篇文章就来分析分析。

在分析路由匹配过程之前,我们先来看看 flask 中,构建这个路由规则的两种方法:

1 .通过 @app.route() decorator,比如文章开头给出的 hello world 例子

2. 通过 app.add_url_rule,这个方法的签名为 add_url_rule(self, rule, endpoint=None, view_func=None, **options),参数的含义如下:

rule: url 规则字符串,可以是静态的 /path,也可以包含 /

endpoint:要注册规则的 endpoint,默认是 view_func 的名字

view_func:对应 url 的处理函数,也被称为视图函数

两种方法等价

# 1.装饰器
@app.route('/')
def index():
return 'Hello World‘ # 2.add_url_rule(rule, endpoint, f, **options)
def hello():
return "hello, world!"
app.add_url_rule('/', 'hello', hello)

NOTE: 其实,还有一种方法来构建路由规则——直接操作 app.url_map 这个数据结构。不过这种方法并不是很常用,因此就不展开了。

注册路由规则的时候,flask 内部做了哪些东西呢?我们来看看 route 方法:

    def route(self, rule, **options):
"""A decorator that is used to register a view function for a
given URL rule. This does the same thing as :meth:`add_url_rule`
but is intended for decorator usage::
@app.route('/')
def index():
return 'Hello World‘
"""
def decorator(f):
endpoint = options.pop('endpoint', None)
self.add_url_rule(rule, endpoint, f, **options)
return f
return decorator

通过闭包的形式传递参数给内部函数,route 方法内部也是调用 add_url_rule,只不过在外面包了一层装饰器的逻辑,这也验证了上面两种方法等价的说法。

def add_url_rule(self, rule, endpoint=None, view_func=None, **options):
"""Connects a URL rule. Works exactly like the :meth:`route`
decorator. If a view_func is provided it will be registered with the
endpoint.
""" methods = options.pop('methods', None) rule = self.url_rule_class(rule, methods=methods, **options)
self.url_map.add(rule)
if view_func is not None:
old_func = self.view_functions.get(endpoint)
if old_func is not None and old_func != view_func:
raise AssertionError('View function mapping is overwriting an '
'existing endpoint function: %s' % endpoint)
self.view_functions[endpoint] = view_func

上面这段代码省略了处理 endpoint 和构建 methods 的部分逻辑,可以看到它主要做的事情就是更新 self.url_map self.view_functions 两个变量。找到变量的定义,发现 url_map 是 werkzeug.routeing:Map 类的对象,rule 是 werkzeug.routing:Rule 类的对象,view_functions 就是一个字典。这和我们之前预想的并不一样,这里增加了 Rule 和 Map 的封装,还把 url 和 view_func 保存到了不同的地方。

需要注意的是:每个视图函数的 endpoint 必须是不同的,否则会报 AssertionError

werkzeug 路由逻辑


>>> m = Map([
... Rule('/', endpoint='index'),
... Rule('/downloads/', endpoint='downloads/index'),
... Rule('/downloads/<int:id>', endpoint='downloads/show')
... ])
>>> urls = m.bind("example.com", "/")
>>> urls.match("/", "GET")
('index', {})
>>> urls.match("/downloads/42")
('downloads/show', {'id': 42}) >>> urls.match("/downloads")
Traceback (most recent call last):
...
RequestRedirect: http://example.com/downloads/
>>> urls.match("/missing")
Traceback (most recent call last):
...
NotFound: 404 Not Found

上面的代码演示了 werkzeug 最核心的路由功能:添加路由规则(也可以使用 m.add),把路由表绑定到特定的环境(m.bind),匹配url(urls.match)。正常情况下返回对应的 endpoint 名字和参数字典,可能报重定向或者 404 异常。

可以发现,endpoint 在路由过程中非常重要。werkzeug 的路由过程,其实是 url 到 endpoint 的转换:通过 url 找到处理该 url 的 endpoint。至于 endpoint 和 view function 之间的匹配关系,werkzeug 是不管的,而上面也看到 flask 是把这个存放到字典中的。

flask 路由实现

好,有了这些基础知识,我们回头看 dispatch_request,继续探寻路由匹配的逻辑:

def dispatch_request(self):
"""Does the request dispatching. Matches the URL and returns the
return value of the view or error handler. This does not have to
be a response object. In order to convert the return value to a
proper response object, call :func:`make_response`.
""" req = _request_ctx_stack.top.request
if req.routing_exception is not None:
self.raise_routing_exception(req)
rule = req.url_rule # dispatch to the handler for that endpoint
return self.view_functions[rule.endpoint](**req.view_args)

这个方法做的事情就是找到请求对象 request,获取它的 endpoint,然后从 view_functions 找到对应 endpoint view_func ,把请求参数传递过去,进行处理并返回。view_functions 中的内容,我们已经看到,是在构建路由规则的时候保存进去的;那请求中 req.url_rule 是什么保存进去的呢?它的格式又是什么?

我们可以先这样理解:_request_ctx_stack.top.request 保存着当前请求的信息,在每次请求过来的时候,flask 会把当前请求的信息保存进去,这样我们就能在整个请求处理过程中使用它。至于怎么做到并发情况下信息不会相互干扰错乱

_request_ctx_stack 中保存的是 RequestContext 对象,它出现在 flask/ctx.py 文件中,和路由相关的逻辑如下:

class RequestContext(object):
def __init__(self, app, environ, request=None):
self.app = app
self.request = request
self.url_adapter = app.create_url_adapter(self.request)
self.match_request() def match_request(self):
"""Can be overridden by a subclass to hook into the matching
of the request.
"""
try:
url_rule, self.request.view_args = \
self.url_adapter.match(return_rule=True)
self.request.url_rule = url_rule
except HTTPException as e:
self.request.routing_exception = e class Flask(_PackageBoundObject):
def create_url_adapter(self, request):
"""Creates a URL adapter for the given request. The URL adapter
is created at a point where the request context is not yet set up
so the request is passed explicitly.
"""
if request is not None:
return self.url_map.bind_to_environ(request.environ,
server_name=self.config['SERVER_NAME'])

在初始化的时候,会调用 app.create_url_adapter 方法,把 app 的 url_map 绑定到 WSGI environ 变量上(bind_to_environ 和之前的 bind 方法作用相同)。最后会调用 match_request 方法,这个方式调用了 url_adapter.match 方法,进行实际的匹配工作,返回匹配的 url rule。而我们之前使用的 url_rule.endpoint 就是匹配的 endpoint 值。

整个 flask 的路由过程就结束了,总结一下大致的流程:

  • 通过 @app.route或者app.add_url_rule 注册应用 url 对应的处理函数
  • 每次请求过来的时候,会事先调用路由匹配的逻辑,把路由结果保存起来
  • dispatch_request 根据保存的路由结果,调用对应的视图函数

match 实现

虽然讲完了 flask 的路由流程,但是还没有讲到最核心的问题:werkzeug 中是怎么实现 match 方法的。Map 保存了 Rule 列表,match 的时候会依次调用其中的 rule.match 方法,如果匹配就找到了 match。Rule.match 方法的代码如下:

def match(self, path):
"""Check if the rule matches a given path. Path is a string in the
form ``"subdomain|/path(method)"`` and is assembled by the map. If
the map is doing host matching the subdomain part will be the host
instead. If the rule matches a dict with the converted values is returned,
otherwise the return value is `None`.
"""
if not self.build_only:
m = self._regex.search(path)
if m is not None:
groups = m.groupdict() result = {}
for name, value in iteritems(groups):
try:
value = self._converters[name].to_python(value)
except ValidationError:
return
result[str(name)] = value
if self.defaults:
result.update(self.defaults) return result

它的逻辑是这样的:用实现 compile 的正则表达式去匹配给出的真实路径信息,把所有的匹配组件转换成对应的值,保存在字典中(这就是传递给视图函数的参数列表)并返回。

Flask源码复习之路由的更多相关文章

  1. Python Web Flask源码解读(二)——路由原理

    关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...

  2. Flask源码分析二:路由内部实现原理

    前言 Flask是目前为止我最喜欢的一个Python Web框架了,为了更好的掌握其内部实现机制,这两天准备学习下Flask的源码,将由浅入深跟大家分享下,其中Flask版本为1.1.1. 上次了解了 ...

  3. flask源码分析

    本flask源码分析不间断更新 而且我分析的源码全是我个人觉得是很beautiful的 1 flask-login 1.1 flask.ext.login.login_required(func),下 ...

  4. 用尽洪荒之力学习Flask源码

    WSGIapp.run()werkzeug@app.route('/')ContextLocalLocalStackLocalProxyContext CreateStack pushStack po ...

  5. flask源码解析之上下文为什么用栈

    楔子 我在之前的文章<flask源码解析之上下文>中对flask上下文流程进行了详细的说明,但是在学习的过程中我一直在思考flask上下文中为什么要使用栈完成对请求上下文和应用上下文的入栈 ...

  6. 浅谈flask源码之请求过程

    更新时间:2018年07月26日 09:51:36   作者:Dear.   我要评论   这篇文章主要介绍了浅谈flask源码之请求过程,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随 ...

  7. 06 flask源码剖析之路由加载

    06 Flask源码之:路由加载 目录 06 Flask源码之:路由加载 1.示例代码 2.路由加载源码分析 1.示例代码 from flask import Flask app = Flask(__ ...

  8. 07 flask源码剖析之用户请求过来流程

    07 Flask源码之:用户请求过来流程 目录 07 Flask源码之:用户请求过来流程 1.创建ctx = RequestContext对象 2. 创建app_ctx = AppContext对象 ...

  9. Flask源码流程分析(一)

    Flask源码流程分析: 1.项目启动: 1.实例化Flask对象 1. 重要的加载项: * url_rule_class = Rule * url_map_class = Map * session ...

随机推荐

  1. 微服务SpringCloud无法进行服务消费

    最近用SpringCloud做微服务,一直无法成功进行服务消费. 我使用的服务消费者是Feign,声明式调用服务提供者. 排查过程 1.检查服务提供者: (1)对提供的方法进行测试,确保提供的服务没有 ...

  2. c++ 面试题(海量数据篇)

    1,在海量数据中找中位数: 题目如下: 只有2G内存的pc机,在一个存有10G个整数的文件,从中找到中位数,写一个算法. 解答:http://www.cnblogs.com/youxin/archiv ...

  3. python argparse(参数解析)模块学习(一)

    class ArgumentParser(_AttributeHolder, _ActionsContainer): """Object for parsing comm ...

  4. Windows下PythonQt3.2使用pandas.pivot_table

     本机环境 1.win7 64 旗舰版 2.Qt 5.9.1(MSVC 2015,32 bit) 3.Python 3.7.1 (32-bit),二进制包安装的,即Windows x86 execut ...

  5. How Xtuner E3 works for BMW 520d Diagnosis and initialization of CBS service

    Using Xtuner E3 to perform BMW 520d Diagnosis and initialization of CBS service in step by step proc ...

  6. 设计模式学习心得<单利模式 Singleton>

    概述 意图 保证一个类仅有一个实例,并提供一个访问它的全局访问点. 主要解决 一个全局使用的类频繁地创建与销毁. 何时使用 当您想控制实例数目,节省系统资源的时候. 如何解决 判断系统是否已经有这个单 ...

  7. netty随笔

    netty是一个nio框架,通过rpc长连接进行通信. nio和bio的区别是:bio是通过tcp/ip的三次握手机制实现通信,服务端连接几个客户端就要开几个线程,而nio有一个叫选择器(多路复用器) ...

  8. 可以用到的XSS跨站语句

    我们常用的测试XSS跨站的语句一般是alert比如: <script>alert(“sex”)</script> <script>alert(/sex/)</ ...

  9. javascript字符串方法总结

    一.单引号字符串内部可以使用双引号,双引号字符串内部也可以使用单引号 "hello 'world'" 'welcome "to" js' 二.多行和转义 如果要 ...

  10. RISC与CISC比较

    1.RISC与CISC的差异 处理器的指令集可简单分为2种,CISC(complex instruction set computer)以及RISC(reduced instruction set c ...