题目

已知某点的应力张量为:

\[\left[
\begin{array}{ccc}
\sigma_{x} &\tau_{xy} &\tau_{xz}\\
\tau_{yx} &\sigma_{y} &\tau_{yz}\\
\tau_{zx} &\tau_{zy} &\sigma_{z}
\end{array}
\right]
=
\left[
\begin{array}{ccc}
0 &1 &2\\
1 & \sigma_{y} & 1\\
2 &1 &0
\end{array}
\right]
\]

并已知经过该点的某一平面上的应力矢量为零矢量,求 \(\sigma_y\) 和主应力?

分析

由题意,存在某个微分面(单位法向量为 \(\boldsymbol{n}\)),其上的应力矢量 \(\boldsymbol{T}=\boldsymbol{0}\),即

\[\boldsymbol{T}=\boldsymbol{\sigma}\cdot\boldsymbol{n}=
\left[\begin{array}{ccc}
0 & 1 & 2\\
1 & \sigma_{y} & 1\\
2 & 1 & 0
\end{array}
\right]
\left[
\begin{array}{c}
n_1\\
n_2\\
n_3
\end{array}
\right]
=
\left[
\begin{array}{c}
0\\
0\\
0
\end{array}
\right]
\]

行列式必须为零

线性方程组存在非零解,必然行列式为零,即

\[\left|\begin{array}{ccc}
0 & 1 & 2\\
1 & \sigma_{y} & 1\\
2 & 1 & 0
\end{array}
\right|
= 0 + 2 + 2 -4\sigma_y - 0 - 0
= 0
\]

求得 \(\sigma_y = 1\)。

应力张量

于是,应力张量为

\[\left[
\begin{array}{ccc}
\sigma_{x} & \tau_{xy} & \tau_{xz}\\
\tau_{yx} & \sigma_{y} & \tau_{yz}\\
\tau_{zx} & \tau_{zy} & \sigma_{z}
\end{array}
\right]
=
\left[
\begin{array}{ccc}
0 & 1 & 2\\
1 & 1 & 1\\
2 & 1 & 0
\end{array}
\right]
\]

特征值问题

求主应力,即为求应力张量的特征值。

\[\left|\,\boldsymbol{\sigma}-\sigma\boldsymbol{I} \,\right| = 0
\]

\[\left|
\begin{array}{ccc}
-\sigma & 1 & 2\\
1 & 1-\sigma & 1\\
2 & 1 & -\sigma
\end{array}
\right|
=
(1-\sigma)\sigma^2 + 2 + 2 - 4(1-\sigma) + \sigma + \sigma = 0
\]

整理得

\[-\sigma^3 + \sigma^2 + 6\sigma = -\sigma(\sigma-3)(\sigma+2) = 0
\]

主应力

得到三个主应力分别为

\[\left\{
\begin{array}{rcr}
\sigma_1 & = & 3\\
\sigma_2 & = & 0\\
\sigma_3 & = & -2
\end{array}
\right.
\]

Python3代码求解

符号运算求特征值

  • 调用 Python 下的 sympy 模块
from sympy import init_printing, Matrix
init_printing(use_unicode=True)

Matrix对象表示应力矩阵

# 生成矩阵对象
sigma = Matrix([[0, 1, 2], [1, 1, 1], [2, 1, 0]])
sigma

\[\left[\begin{matrix}0 & 1 & 2\\1 & 1 & 1\\2 & 1 & 0\end{matrix}\right]
\]

求特征值

  • 前已求得三个主应力分别为

\[\left\{
\begin{array}{rcr}
\sigma_1 & = & 3\\
\sigma_2 & = & 0\\
\sigma_3 & = & -2
\end{array}
\right.
\]

  • 调用 Matrix 对象的 eigenvals 方法
sigma.eigenvals() # 求特征值

\[\left \{ -2 : 1, \quad 0 : 1, \quad 3 : 1\right \}
\]

  • 冒号后的数字表示一重特征值

求特征矢量

  • 调用 Matrix 对象的 eigenvects 方法
sigma.eigenvects()

\[\left [ \left ( -2, \quad 1, \quad \left [ \left[\begin{matrix}-1\\0\\1\end{matrix}\right]\right ]\right ), \quad \left ( 0, \quad 1, \quad \left [ \left[\begin{matrix}1\\-2\\1\end{matrix}\right]\right ]\right ), \quad \left ( 3, \quad 1, \quad \left [ \left[\begin{matrix}1\\1\\1\end{matrix}\right]\right ]\right )\right ]
\]

参考

Python3之弹性力学——应力张量1的更多相关文章

  1. Python3之弹性力学——应力张量2

    问题 已知某应力张量的分量为 \[ \sigma_{11}=3,\quad\sigma_{12} = \sigma_{13} = 1, \quad \sigma_{22} = \sigma_{33} ...

  2. python3  threading初体验

    python3中thread模块已被废弃,不能在使用thread模块,为了兼容性,python3将thread命名为_thread.python3中我们可以使用threading进行代替. threa ...

  3. Python3中的字符串函数学习总结

    这篇文章主要介绍了Python3中的字符串函数学习总结,本文讲解了格式化类方法.查找 & 替换类方法.拆分 & 组合类方法等内容,需要的朋友可以参考下. Sequence Types ...

  4. Mac-OSX的Python3.5虚拟环境下安装Opencv

    Mac-OSX的Python3.5虚拟环境下安装Opencv 1   关键词 关键词:Mac,OSX,Python3.5,Virtualenv,Opencv 2   概述 本文是一篇 环境搭建 的基础 ...

  5. Ubuntu部署python3.5的开发和运行环境

    Ubuntu部署python3.5的开发和运行环境 1 概述 由于最近项目全部由python2.x转向 python3.x(使用目前最新的 python3.5.1) ,之前的云主机的的默认python ...

  6. Python3 登陆网页并保持cookie

    网页登陆 网页登陆的原理都是,保持一个sessionid在cookie然后,根据sessionid在服务端找到cookie进行用户识别 python实现 由于python的简单以及丰富的类库是开发网络 ...

  7. 阿里云 SDK python3支持

    最近的一个项目需要操作阿里云的RDS,项目使用python3,让人惊讶的是官方的SDK竟然只支持python2 在阿里云现有SDK上改了改,文件的修改只涉及aliyun/api/base.py,详见h ...

  8. python3爬取1024图片

    这两年python特别火,火到博客园现在也是隔三差五的出现一些python的文章.各种开源软件.各种爬虫算法纷纷开路,作为互联网行业的IT狗自然看的我也是心痒痒,于是趁着这个雾霾横行的周末瞅了两眼,作 ...

  9. CentOS7中安装Python3.5

    1.下载 https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz 2.上传到服务器 3. 安装相关依赖 yum install gcc ope ...

随机推荐

  1. cut sticks

    问题 : cut sticks 时间限制: 1 Sec  内存限制: 128 MB 题目描述 George took sticks of the same length and cut them ra ...

  2. Python属性(@property)

    创建用于计算机的属性 在Python中,可以通过@property(装饰器)将一个方法转换为属性,从而实现用于计算的属性.将方法转换为属性后,可以直接通过方法名来访问方法,而不需要再添加一对小括号&q ...

  3. AI学习吧

    一:AI学习吧 项目描述 系统使用前后端分离的模式,前端使用vue框架,后端使用restframework实现. 项目需求 公司开发AI学习吧,由于公司需要一款线上学习平台,要开发具有线上视频学习.支 ...

  4. Centos7.4上Apache(http)编译安装

    前提:1.这个centos操作系统能上网 2.yum 安装apr,apr-util,zlib-devel,groupinstall  Development  Tools,gcc 1.在apache的 ...

  5. linux:安装并使用mongo

    1.下载mongo:  curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0.6.tgz 2.解压: tar -zxvf ...

  6. @ResponseBody 和 @RequestBody 的作用

    先提一嘴 @RequestMapping(“url”),这里的 url写的是请求路径的一部分,一般作用在 Controller的方法上,作为请求的映射地址. 代码: @RequestMapping(v ...

  7. 史上最简单的SpringCloud教程 | 第二篇: 服务消费者(rest+ribbon)

    在上一篇文章,讲了服务的注册和发现.在微服务架构中,业务都会被拆分成一个独立的服务,服务与服务的通讯是基于http restful的.Spring cloud有两种服务调用方式,一种是ribbon+r ...

  8. python的学习和使用

    1.python的官网:https://www.python.org/ Python简介: .Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言. .Python 的设计具有 ...

  9. (2).NET CORE微服务 Micro-Service ---- .NetCore启动配置 和 .NetCoreWebApi

    什么是.Net Core?.Net Core是微软开发的另外一个可以跨Linux.Windows.mac等平台的.Net.Net Core相关知识看文章地步dotnet dllname.dll 运行P ...

  10. java中String和StringBuffer的区别

    前言 String和StringBuffer本质上都是修饰字符串的只是含义不同 StringBuffer叫做字符串缓冲区 首先看下string类的例子 public class Work1 { pub ...