PRML读书笔记_绪论
一、基本名词
泛化(generalization)
训练集所训练的模型对新数据的适用程度。
监督学习(supervised learning)
训练数据的样本包含输入向量以及对应的目标向量。
- 分类( classification ):给每个输入向量分配到有限数量离散标签中的一个。
- 回归( regression ):输出由一个或者多个连续变量组成。
无监督学习(unsupervised learning)
训练数据由一组输入向量 x 组成,没有任何对应的目标值。
- 聚类(clustering):发现数据中相似样本的分组。
- 密度估计(density estimation):决定输入空间中数据的分布。
反馈学习(reinforcement learning)
在给定的条件下,找到合适的动作,使得奖励达到最大值。学习问题没有给定最优输出的用例。这些用例必须在一系列的实验和错误中被发现。
反馈学习的一个通用的特征是探索( exploration )和利用( exploitation )的折中,过分地集中于探索或者利用都会产生较差的结果。
- 探索:是指系统尝试新类型的动作,
- 利用:是指系统使用已知能产生较高奖励的动作。
二、概率论
1.概率论的两个基本规则:加和规则( sumrule )、乘积规则( product rule )
2.贝叶斯定理( Bayes' theorem )
贝叶斯定理中的分母可以用出现在分子中的项表示:
- 先验概率( prior probability ):\(p(Y)\) 在未知\(X\)分布时,我们已知\(Y\)分布,顾称\(p(Y)\)为先验。
- 后验概率( posterior probability ):\(p(Y|X)\) 在得知\(X\)分布后,加入\(p(X)\)的约束可以的到条件概率\(p(Y|X)\),称之为后验。
3.概率密度
概率密度( probability density )
满足下面两个条件:
一个变量的变化\(x = g(y)\) , 那么函数\(f (x)\)就变成了$ f ̃ (y) = f (g(y))$
累积分布函数( cumulative distribution function )
概率密度函数加和规则和乘积规则
4.期望和协方差
期望( expectation )
离散变量
连续变量
方差( variance )
可以化为:
协方差( covariance )
协方差是对两个随机变量 x 和 y而言:
在两个随机向量 x 和 y 的情形下,协方差是一个矩阵:
PRML读书笔记_绪论的更多相关文章
- PRML读书笔记_绪论曲线拟合部分
一.最小化误差函数拟合 正则化( regularization )技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值.这种惩罚项最简单的形式采用所有系数的平方和的形式.这推导出了误差函数的修 ...
- PRML读书笔记——3 Linear Models for Regression
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...
- PRML读书笔记——机器学习导论
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上
完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_下
数据读取部分实现 文中采用了tensorflow的从文件直接读取数据的方式,逻辑流程如下, 实现如下, # Author : Hellcat # Time : 2017/12/9 import os ...
- PRML读书笔记——线性回归模型(上)
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...
- The Way to Go读书笔记_第4章_基本结构和基本数据类型
“_”标识符 _ 本身就是一个特殊的标识符,被称为空白标识符.它可以像其他标识符那样用于变量的声明或赋值(任何类型都可以赋值给它),但任何赋给这个标识符的值都将被抛弃,因此这些值不能在后续的代码中使用 ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
随机推荐
- 30个你 “ 不可能全部会做 ” 的javascript题目
1,以下表达式的运行结果是: ["1","2","3"].map(parseInt) A.["1","2&qu ...
- CSS3渐变——线性渐变
渐变背景一直以来在Web页面中都是一种常见的视觉元素.但一直以来,Web设计师都是通过图形软件设计这些渐变效果,然后以图片形式或者背景图片的形式运用到页面中.Web页面上实现的效果,仅从页面的视觉效果 ...
- UCML 参与者关键 与依赖关联外键
- WebSocket原理与实践(一)---基本原理
WebSocket原理与实践(一)---基本原理 一:为什么要使用WebSocket?1. 了解现有的HTTP的架构模式:Http是客户端/服务器模式中请求-响应所用的协议,在这种模式中,客户端(一般 ...
- C++ 一个整数的二进制表示中1的个数
想知道某一位是否为1,只需和当前位对应的2的幂进行按位与运算即可. 如下示例,可以知道第6位是1,同理可知其他位是否为1,累加就能得到1的个数: 10001001 00000000 int cnt = ...
- ASP.NET 文件操作类
1.读取文件 2.写入文件 using System; using System.Collections.Generic; using System.IO; using System.Linq; us ...
- Euler:欧拉函数&素数筛
一.欧拉函数 欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示. 通式: 其中p1, p2……pn为x的所有质因数,x是不为0的整数. 比如x=12,拆成质因数为12=2*2*3, ...
- 循环神经网络RNN的基本介绍
本博客适合那些BP网络很熟悉的读者 一 基本结构和前向传播 符号解释: 1. $c_{t}^{l}$:t时刻第l层的神经元的集合,因为$c_{t}^{l}$表示的是一层隐藏层,所以图中一个圆圈表示多个 ...
- JAVA实现用户的权限管理
一:写在前面 前两天有个同学问我,那个系统不同的用户登陆不同的页面不同,要写很多个页面啊!而每个用户的在系统中拥有不同的权限,可以访问不同的页面是怎么实现的??那低权限的在浏览器输入高权限的人的url ...
- js 稍微判断下浏览器 pc 还是手机
function isMobile() { var a=navigator.userAgent; var ref=/.*(Android|iPhone|SymbianOS|iPad| ...