HDU 1176 免费馅饼 (动态规划)
HDU 1176 免费馅饼 (动态规划)
Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n,表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T,表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0
Sample Output
4
Http
HDU:https://vjudge.net/problem/HDU-1176
Source
动态规划
解决思路
这道题的动态转移方程比较好想,设F[i][j]表示第i秒在位置j能接到的最大馅饼数,则有:
\(F[i][j]=max(F[i-1][j],F[i-1][j-1],F[i-1][j+1])+第i秒位置j有的馅饼数\)
但是本题需要注意一个细节,开始的时候是固定从5开始的。
怎么办呢?
一种办法就是手动写出前5秒的情况。
另一种聪明的方法就是从后往前动态转移,也就是让后面的先处理,最后我们输出F[1][5]即可。那么转移方程就是
\(F[i][j]=max(F[i+1][j],F[i+1][j-1],F[i+1][j+1])+第i秒位置j有的馅饼数\)
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxPos=15;
const int maxT=100011;
const int inf=2147483647;
int n;
int T;
int F[maxT][maxPos];//馅饼数可以直接统计在F中,直接累加即可
int main()
{
while(cin>>n)
{
if (n==0)
break;
T=0;
memset(F,0,sizeof(F));
for (int i=1;i<=n;i++)
{
int pos,tpie;
scanf("%d%d",&pos,&tpie);
F[tpie][pos]++;
T=max(T,tpie);
}
for (int i=T;i>=0;i--)
{
F[i][0]+=max(F[i+1][0],F[i+1][1]);
for (int j=1;j<=9;j++)
F[i][j]+=max(F[i+1][j],max(F[i+1][j-1],F[i+1][j+1]));
F[i][10]+=max(F[i+1][10],F[i+1][9]);
}
printf("%d\n",F[0][5]);
}
return 0;
}
HDU 1176 免费馅饼 (动态规划)的更多相关文章
- hdu 1176 免费馅饼(动态规划)
AC code: #include<stdio.h> #include<string.h> #define max(a,b) (a>b?a:b) #define maxo ...
- hdu 1176 免费馅饼(数塔类型)
http://acm.hdu.edu.cn/showproblem.php?pid=1176 免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory ...
- HDU 1176 免费馅饼 (类似数字三角形的题,很经典,值得仔细理解的dp思维)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1176 免费馅饼 Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 1176 免费馅饼【动态规划】
解题思路:用a[i][j]表示在第i秒在地点j的掉落馅饼的数量,设整个馅饼掉落的时间持续为timemax,即为矩阵的高度,一共0到10个地点,为矩阵的长度,如图,即可构成数塔,因为考虑到在地点0的时候 ...
- HDU 1176 免费馅饼 (动态规划、另类数塔)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- HDU 1176免费馅饼 DP数塔问题转化
L - 免费馅饼 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- HDU 1176 免费馅饼(记忆化搜索)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1176 免费馅饼
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- HDU 1176 免费馅饼(数字三角形)
免费馅饼 Problem Description 都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼.说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉 ...
随机推荐
- 在Windows7上如何找到Cookie
摘要 出于兴趣爱好,前一阵子做了一个网页,网页中需要用到Cookie,但是,根据书上的说明,并没有找打教材中所说的Cookie的位置,本文就主要介绍在计算机(Win7)中Cookie的存放位置,同样适 ...
- Mvc_前后端绑定数据json集合
ViewBag.SysModuleList =new List<SysModule>(){.....}; var data = @Html.Raw(Json.Encode(ViewBag ...
- PHP从入门到精通(一)
(一)PHP简介和基本知识 PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言.语法吸收了C语言.Java和Perl的特点,利于 ...
- [Android]记录一次处理app:transformDexArchiveWithExternalLibsDexMergerForDebug错误
第一种情况: Android 目录结构如下: app中build.gradle包含: implementation 'com.squareup.okhttp3:okhttp:3.6.0' implem ...
- Hybrid APP基础篇(一)->什么是Hybrid App
最新更新 一个开源的快速混合开发框架:https://github.com/quickhybrid/quickhybrid Android.iOS.JS三端内容初步都已经完成,有完善的设计思路.教程以 ...
- PairProject——结对编程
成员:12061162 王骜 12061225 钟毅恒 一.合作过程中的照片 . 二.结对编程的优缺点 优点: 1)在编程过程中,任何一段代码都不断地复审,同时避免了将写代码的责任抛给一个人的问题 ...
- 个人博客Week3——案例分析
一.调研,评测 我使用的bing的WINDOWS客户端,其大致分为四个模块:词典.例句.翻译.应用. (1)“词典”模块 BUG:搜索”http“词条,界面显示http的相关,但是无法再回到最初的主界 ...
- linux及安全第三周总结——跟踪分析LINUX内核的启动过程
linux内核目录结构 arch目录包括了所有和体系结构相关的核心代码.它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录.PC机一 ...
- SE Springer小组之《Spring音乐播放器》需求分析说明书一
软件需求说明书 软件需求说明书的编制是为了使用户和软件开发者双方对该软件的初始规定有一个共同的理解, 使之成为整个开发工作的基础. 1 引言 1.1编写目的 使用户对该软件的初始规定有一个理解,也使软 ...
- Linux (centos7) 防火墙命令
防火墙配置 CentOS 7默认使用的是firewall作为防火墙,这里改为iptables防火墙. firewall操作: # service firewalld status; #查看防火墙状态 ...