import struct
import numpy as np
import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = np.array([[2,1,1],[3,0,1],[1,1,0]]) def convolve(dateMat,kernel):
m,n = dateMat.shape
km,kn = kernel.shape
newMat = np.ones(((m - km + 1),(n - kn + 1)))
tempMat = np.ones(((km),(kn)))
for row in range(m - km + 1):
for col in range(n - kn + 1):
for m_k in range(km):
for n_k in range(kn):
tempMat[m_k,n_k] = dateMat[(row + m_k),(col + n_k)] * kernel[m_k,n_k]
newMat[row,col] = np.sum(tempMat) return newMat newMat = convolve(dateMat,kernel)
print(newMat)

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 3, 3, 1]))
filter1 = tf.Variable(tf.ones([1, 1, 1, 1])) init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='VALID')
print(sess.run(conv2d))

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1])) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='VALID')
print(sess.run(conv2d))

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1])) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='SAME')
print(sess.run(conv2d))

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1])) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 2, 2, 1], padding='SAME')
print(sess.run(conv2d))

import cv2
import numpy as np
import tensorflow as tf img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3]) filter1 = tf.Variable(tf.ones([7, 7, 3, 1])) init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1 cv2.imshow("lover",res_image.astype('uint8'))
cv2.waitKey()
import cv2
import numpy as np
import tensorflow as tf img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3]) filter1 = tf.Variable(tf.ones([11, 11, 3, 1])) init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1 cv2.imshow("lover",res_image.astype('uint8'))
cv2.waitKey()
import tensorflow as tf

data=tf.constant([
[[3.0,2.0,3.0,4.0],
[2.0,6.0,2.0,4.0],
[1.0,2.0,1.0,5.0],
[4.0,3.0,2.0,1.0]]
])
data = tf.reshape(data,[1,4,4,1])
maxPooling=tf.nn.max_pool(data, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') with tf.Session() as sess:
print(sess.run(maxPooling))

import cv2
import numpy as np
import tensorflow as tf img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3]) filter1 = tf.Variable(tf.ones([7, 7, 3, 1]))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
res = tf.nn.max_pool(res, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
res_image = sess.run(tf.reshape(res,[128,128]))/128 + 1 cv2.imshow("lover",res_image.astype('uint8'))
cv2.waitKey()
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 声明输入图片数据,类别
x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])
# 输入图片数据转化
x_image = tf.reshape(x, [-1, 28, 28, 1]) #第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.sigmoid(conv1 + bias1) maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.sigmoid(conv2 + bias2) maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.sigmoid(conv3 + bias3) # 全连接层
# 权值参数
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 将卷积的产出展开
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神经网络计算,并添加sigmoid激活函数
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 输出层,使用softmax进行多分类
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用GDO优化算法来调整参数
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) sess = tf.InteractiveSession()
# 测试正确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 所有变量进行初始化
sess.run(tf.initialize_all_variables()) # 获取mnist数据
mnist_data_set = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) # 进行训练
start_time = time.time()
for i in range(20000):
# 获取训练数据
batch_xs, batch_ys = mnist_data_set.train.next_batch(200) # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
print("step %d, training accuracy %g" % (i, train_accuracy))
# 计算间隔时间
end_time = time.time()
print('time: ', (end_time - start_time))
start_time = end_time
# 训练数据
train_step.run(feed_dict={x: batch_xs, y_: batch_ys}) # 关闭会话
sess.close()

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 声明输入图片数据,类别
x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])
# 输入图片数据转化
x_image = tf.reshape(x, [-1, 28, 28, 1]) #第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.relu(conv1 + bias1) maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.relu(conv2 + bias2) maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.relu(conv3 + bias3) # 全连接层
# 权值参数
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 将卷积的产出展开
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神经网络计算,并添加relu激活函数
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 输出层,使用softmax进行多分类
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用GDO优化算法来调整参数
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) sess = tf.InteractiveSession()
# 测试正确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 所有变量进行初始化
sess.run(tf.initialize_all_variables()) # 获取mnist数据
mnist_data_set = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) # 进行训练
start_time = time.time()
for i in range(20000):
# 获取训练数据
batch_xs, batch_ys = mnist_data_set.train.next_batch(200) # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
print("step %d, training accuracy %g" % (i, train_accuracy))
# 计算间隔时间
end_time = time.time()
print('time: ', (end_time - start_time))
start_time = end_time
# 训练数据
train_step.run(feed_dict={x: batch_xs, y_: batch_ys}) # 关闭会话
sess.close()

吴裕雄 python深度学习与实践(16)的更多相关文章

  1. 吴裕雄 python深度学习与实践(17)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...

  2. 吴裕雄 python深度学习与实践(13)

    import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...

  3. 吴裕雄 python深度学习与实践(5)

    import numpy as np data = np.mat([[1,200,105,3,False], [2,165,80,2,False], [3,184.5,120,2,False], [4 ...

  4. 吴裕雄 python深度学习与实践(18)

    # coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...

  5. 吴裕雄 python深度学习与实践(15)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...

  6. 吴裕雄 python深度学习与实践(14)

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...

  7. 吴裕雄 python深度学习与实践(12)

    import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...

  8. 吴裕雄 python深度学习与实践(11)

    import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...

  9. 吴裕雄 python深度学习与实践(10)

    import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...

随机推荐

  1. Shiro 整合SpringMVC 并实现权限管理,登录和注销

    Shiro 整合SpringMVC 并且实现权限管理,登录和注销 Apache Shiro是Java的一个安全框架.目前,使用Apache Shiro的人越来越多,因为它相当简单,对比Spring S ...

  2. RabbitMq入门以及使用教程

    祭出原帖:https://blog.csdn.net/lyhkmm/article/details/78772919 原文转载:http://blog.csdn.net/whycold/article ...

  3. 查询正在运行的请求及其后台对应SQL

    SELECT a.event , s.actual_start_date , a.sid, a.serial#, sa.sql_fulltext , sa.sql_text , v.user_conc ...

  4. 子数组的最大异或和---Trie

    异或的运算法则为:0⊕0=0,1⊕0=1,0⊕1=1,1⊕1=0(同为0,异为1),这些法则与加法是相同的,只是不带进位,所以异或常被认作不进位加法. 前缀树详解:https://www.cnblog ...

  5. 一、Ansible安装

    1:安装ansible ,选择的是yum 安装,简单,ansible的管理端必须是Linux系统       YUM是一个shell前端软件包管理器.基于RPM包管理,能够从指定的服务器自动下载RPM ...

  6. Docker入门与实战讲解

    转载自:http://blog.csdn.net/relax_hb/article/details/69668815 简述 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包 ...

  7. nginx配置http强制跳转https

    nginx配置http强制跳转https 网站添加了https证书后,当http方式访问网站时就会报404错误,所以需要做http到https的强制跳转设置. 一.采用nginx的rewrite方法 ...

  8. [综] meanshift算法

    Meanshift,聚类算法 http://www.cnblogs.com/liqizhou/archive/2012/05/12/2497220.html 记得刚读研究生的时候,学习的第一个算法就是 ...

  9. <ROS> 通讯方式之 Action

    Ros 官网介绍 http://wiki.ros.org/actionlib 一个简易的action教程,package -- example_action_server. action文件夹内存放 ...

  10. sas 获取数据集观测数量

    DATA _NULL_;SET SASHELP.CLASS NOBS=N;CALL SYMPUTX('N',N);STOP;RUN; %PUT N=&N.; 运行结果: 57 DATA _NU ...