问题 C: Canonical Coin Systems

时间限制: 1 Sec  内存限制: 128 MB

提交: 200  解决: 31

[提交] [状态] [命题人:admin]

题目描述

A coin system S is a finite (nonempty) set of distinct positive integers corresponding to coin values, also called denominations, in a real or imagined monetary system. For example, the coin system in common use in Canada is {1, 5, 10, 25, 100, 200}, where 1 corresponds to a 1-cent coin and 200 corresponds to a 200-cent (2-dollar) coin. For any coin system S, we assume that there is an unlimited supply of coins of each denomination, and we also assume that S contains 1,since this guarantees that any positive integer can be written as a sum of (possibly repeated) values in S.

Cashiers all over the world face (and solve) the following problem: For a given coin system and a positive integer amount owed to a customer, what is the smallest number of coins required to dispense exactly that amount? For example, suppose a cashier in Canada owes a customer 83 cents. One possible solution is 25+25+10+10+10+1+1+1, i.e.,8 coins, but this is not optimal, since the cashier could instead dispense 25 + 25 + 25 + 5 + 1 + 1 + 1, i.e., 7 coins (which is optimal in this case). Fortunately, the Canadian coin system has the nice property that the greedy algorithm always yields an optimal solution, as do the coin systems used in most countries. The greedy algorithm involves repeatedly choosing a coin of the

largest denomination that is less than or equal to the amount still owed, until the amount owed reaches zero. A coin system for which the greedy algorithm is always optimal is called canonical.

Your challenge is this: Given a coin system S = {c1, c2, . . . , cn }, determine whether S is canonical or non-canonical. Note that if S is non-canonical then there exists at least one counterexample, i.e., a positive integer x such that the minimum number of coins required to dispense exactly x is less than the number of coins used by the greedy algorithm. An example of a non-canonical coin system is {1, 3, 4}, for which 6 is a counterexample, since the greedy algorithm yields 4 + 1 + 1 (3 coins), but an optimal solution is 3 + 3 (2 coins). A useful fact (due to Dexter Kozen and Shmuel Zaks) is that if S is non-canonical, then the smallest counterexample is less than the sum of the two largest denominations.

输入

Input consists of a single case. The first line contains an integer n (2 ≤ n ≤ 100), the number of denominations in the coin system. The next line contains the n denominations as space-separated integers c1 c2 . . . cn, where c1 = 1 and c1 < c2 < . . . < cn ≤ 106.

输出

Output “canonical” if the coin system is canonical, or “non-canonical” if the coin system is non-canonical.

样例输入

复制样例数据

4
1 2 4 8

样例输出

canonical

题意 : 有n种面额的货币,如果能保证所以金额,用贪心思想算出的货币张数(每次减先大面额的货币)和 正确的货币张数是相同的,就是规范的(输出canonical),如果贪心算出的货币张数比正确算出的多,那就是不规范的(输出non-canonical)

正确的货币张数可以通过完全背包算出  转移方程 dp[i] = d[i - a[j] ] + 1;(dp[i]代表剩余金额为i时已经拥有的张数,a[j]代表第j张钱的面额)

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =2000010;
using namespace std;
int n;
int a[maxn],dp[maxn];
int main(){
  sca(n);
  for(int i = 0; i < n; i++)
    sca(a[i]);
  sort(a,a+n);
  int maxl = a[n - 1] * 2;
  for(int i = 0; i < maxl; i++) dp[i] = INF;
  dp[0] = 0;
  int flag = 1;
  for(int i = 1; i < maxl; i++){
    for(int j = 0; j < n; j++){
      if(a[j] <= i)
        dp[i] = min(dp[i], dp[i - a[j]] + 1);    //背包
    }
    int cnt = 0;
    int sum = i;
    int pos = n - 1;
    while(sum){                         //贪心
      while(sum >= a[pos]){
        sum -= a[pos];
        cnt ++;
      }
      pos--;
    }
    if(cnt > dp[i]) flag = 0; //不等就是不规范
  }
  if(flag) printf("canonical\n");
  else printf("non-canonical\n");
  return 0;
}

Canonical Coin Systems【完全背包】的更多相关文章

  1. upc组队赛6 Canonical Coin Systems【完全背包+贪心】

    Canonical Coin Systems 题目描述 A coin system S is a finite (nonempty) set of distinct positive integers ...

  2. uva674 Coin Change ——完全背包

    link:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA-674 Coin Change---完全背包

    题目链接: https://vjudge.net/problem/UVA-674 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 思路: 每 ...

  4. Light oj 1233 - Coin Change (III) (背包优化)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1233 题目就不说明了. 背包的二进制优化,比如10可以表示为1 2 4 3,而 ...

  5. [luoguP1474] 货币系统 Money Systems(背包)

    传送门 背包 ——代码 #include <cstdio> #include <iostream> #define LL long long int v, n; LL f[10 ...

  6. codeforces 284 E. Coin Troubles(背包+思维)

    题目链接:http://codeforces.com/contest/284/problem/E 题意:n种类型的硬币,硬币的面值可能相同,现在要在满足一些限制条件下求出,用这些硬币构成t面值的方案数 ...

  7. 【题解】coin HDU2884 多重背包

    题目 Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. 【洛谷】P1474 货币系统 Money Systems(背包dp)

    题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...

  9. 算法入门经典大赛 Dynamic Programming

    111 - History Grading LCS 103 - Stacking Boxes 最多能叠多少个box DAG最长路 10405 - Longest Common Subsequence ...

随机推荐

  1. Nginx配置跨域请求 CORS

    当出现403跨域错误的时候 No 'Access-Control-Allow-Origin' header is present on the requested resource,需要给Nginx服 ...

  2. [LeetCode] Flip Game II 翻转游戏之二

    You are playing the following Flip Game with your friend: Given a string that contains only these tw ...

  3. css处理文本溢出

    css: .box{ width: 100px; overflow:hidden; white-space:nowrap; text-overflow:ellipsis; } white-space: ...

  4. 我的WafBypass之道(upload篇)

    0x00 前言 玩waf当然也要讲究循序渐进,姊妹篇就写文件上传好了,感觉也就SQLi和Xss的WafBypass最体现发散性思维的,而文件上传.免杀.权限提升这几点的Bypass更需要的是实战的经验 ...

  5. php计算几分钟前、几小时前、几天前的几个函数

    函数方法: /*php计算几分钟前.几小时前.几天前的几个函数*/ function get_date($time){ $t=time()-$time; $f=array( '31536000'=&g ...

  6. php直接执行linux 命令

    注意你可以使用的命令只能是php这个用户组的权限和范围,注意这个linux 执行的,windows也是可以对应dos命令,但是打印格式不是很好看 //$output = `ls -al`; //$ou ...

  7. 新版Ubuntu安装日文输入法

    在Ubuntu的设置中安装日文输入法 本周在调试书上代码时需要安装日文输入法,我发现在百度上并没有在最新版Ubuntu下安装日文输入法的教程,于是我写了这篇博客来与大家分享一下我的安装过程. a.如图 ...

  8. javascript 窗口宽高滚动

    //不加window IE不支持 console.info(window.screenLeft);//IE支持火狐不支持 console.info(window.screenX);//火狐支持,IE不 ...

  9. git的简单玩法

    本篇笔记参考廖雪峰的git教程,为方便查看将命令部分提取并记录下来. 无意对原作的版权侵犯,如需要学习请到廖雪峰网站学习git 创建git仓库 # mkdir learngit && ...

  10. Vue.filter 过滤器

    [过滤器] import Vue from '../../../node_modules/vue/dist/vue'; // 后台数据与前端展示数据需要换算,与后台交互的请求的参数是不需要.假如说前端 ...