Problem Description
We have met so many problems on the tree, so today we will have a query problem on a set of trees. 
There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun!

Input
There are multiple test cases in our dataset. 
For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially. 
The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000) 
The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation. 
1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one. 
2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts. 
3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w. 
4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it. 
 
Output
For each query you should output the correct answer of it. If you find this query is an illegal operation, you should output ‐1. 
You should output a blank line after each test case.

题目大意:给出一棵带点权树,有4种操作:连边x到y;删掉以x为根的树种y与其父节点的连边;把x到y路径上所有点的权值+1;询问x到y路径上的最大点权。

推荐论文:《QTREE解法的一些研究》,参考代码:http://www.cnblogs.com/kuangbin/archive/2013/09/04/3300251.html

代码(1156MS):

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * ;
const int INF = 0x7fffffff; int ch[MAXN][], pre[MAXN], key[MAXN];
int add[MAXN], rev[MAXN], maxt[MAXN];
bool rt[MAXN]; int head[MAXN];
int to[MAXE], next[MAXE];
int ecnt, n, m, op; inline void init() {
ecnt = ;
for(int i = ; i <= n; ++i) {
head[i] = ch[i][] = ch[i][] = ;
pre[i] = add[i] = rev[i] = ;
rt[i] = true;
}
maxt[] = -INF;
} inline void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} void dfs(int u) {
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(pre[v]) continue;
pre[v] = u;
dfs(v);
}
} inline void update_max(int r) {
maxt[r] = max(max(maxt[ch[r][]], maxt[ch[r][]]), key[r]);
} inline void update_add(int r, int d) {
if(!r) return ;
key[r] += d;
maxt[r] += d;
add[r] += d;
} inline void update_rev(int r) {
if(!r) return ;
swap(ch[r][], ch[r][]);
rev[r] ^= ;
} inline void pushdown(int r) {
if(add[r]) {
update_add(ch[r][], add[r]);
update_add(ch[r][], add[r]);
add[r] = ;
}
if(rev[r]) {
update_rev(ch[r][]);
update_rev(ch[r][]);
rev[r] = ;
}
} void rotate(int x) {
int y = pre[x], t = ch[y][] == x;
ch[y][t] = ch[x][!t];
pre[ch[y][t]] = y;
pre[x] = pre[y];
pre[y] = x;
ch[x][!t] = y;
if(rt[y]) rt[y] = false, rt[x] = true;
else ch[pre[x]][ch[pre[x]][] == y] = x;
update_max(y);
} void P(int r) {
if(!rt[r]) P(pre[r]);
pushdown(r);
} inline void Splay(int r) {
P(r);
while(!rt[r]) {
int f = pre[r], ff = pre[f];
if(rt[f]) rotate(r);
else if((ch[ff][] == f) == (ch[f][] == r)) rotate(f), rotate(r);
else rotate(r), rotate(r);
}
update_max(r);
} inline int access(int x) {
int y = ;
while(x) {
Splay(x);
rt[ch[x][]] = true, rt[ch[x][] = y] = false;
update_max(x);
x = pre[y = x];
}
return y;
} inline void be_root(int r) {
access(r);
Splay(r);
update_rev(r);
} inline void lca(int &u, int &v) {
access(v), v = ;
while(u) {
Splay(u);
if(!pre[u]) return ;
rt[ch[u][]] = true;
rt[ch[u][] = v] = false;
update_max(u);
u = pre[v = u];
}
} inline int root(int u) {
while(pre[u]) u = pre[u];
return u;
} inline void link(int u, int v) {
if(u == v || root(u) == root(v)) puts("-1");
else {
be_root(u);
pre[u] = v;
}
} inline void cut(int u, int v) {
if(u == v || root(u) != root(v)) puts("-1");
else {
be_root(u);
Splay(v);
pre[ch[v][]] = pre[v];
pre[v] = ;
rt[ch[v][]] = true;
ch[v][] = ;
update_max(v);
}
} inline void modity(int u, int v, int w) {
if(root(u) != root(v)) puts("-1");
else {
lca(u, v);
update_add(ch[u][], w);
update_add(v, w);
key[u] += w;
update_max(u);
}
} inline void query(int u, int v) {
if(root(u) != root(v)) puts("-1");
else {
lca(u, v);
printf("%d\n", max(max(maxt[v], maxt[ch[u][]]), key[u]));
}
} int main() {
while(scanf("%d", &n) != EOF) {
init();
for(int i = ; i < n; ++i) {
int u, v;
scanf("%d%d", &u, &v);
add_edge(u, v);
}
for(int i = ; i <= n; ++i) scanf("%d", &key[i]);
pre[] = -; dfs(); pre[] = ;
scanf("%d", &m);
while(m--) {
scanf("%d", &op);
if(op == ) {
int x, y;
scanf("%d%d", &x, &y);
link(x, y);
}
if(op == ) {
int x, y;
scanf("%d%d", &x, &y);
cut(x, y);
}
if(op == ) {
int x, y, w;
scanf("%d%d%d", &w, &x, &y);
modity(x, y, w);
}
if(op == ) {
int x, y;
scanf("%d%d", &x, &y);
query(x, y);
}
}
puts("");
}
}

HDU 4010 Query on The Trees(动态树LCT)的更多相关文章

  1. HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意; 先给你一棵树,有 \(4\) 种操作: 1.如果 \(x\) 和 \(y\) 不在同一 ...

  2. HDU 4010 Query on The Trees(动态树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意:一棵树,四种操作: (1)若x和y不在一棵树上,将x和y连边: (2)若x和y在一棵树上, ...

  3. 动态树(LCT):HDU 4010 Query on The Trees

    Query on The Trees Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Othe ...

  4. HDU 4010.Query on The Trees 解题报告

    题意: 给出一颗树,有4种操作: 1.如果x和y不在同一棵树上则在xy连边 2.如果x和y在同一棵树上并且x!=y则把x换为树根并把y和y的父亲分离 3.如果x和y在同一棵树上则x到y的路径上所有的点 ...

  5. HDU 4010 Query on The Trees(动态树)

    题意 给定一棵 \(n\) 个节点的树,每个点有点权.完成 \(m\) 个操作,操作四两种,连接 \((x,y)\) :提 \(x\) 为根,并断 \(y\) 与它的父节点:增加路径 \((x,y)\ ...

  6. HDU 4010 Query on The Trees

    Problem Description We have met so many problems on the tree, so today we will have a query problem ...

  7. hdu 4010 Query on The Trees LCT

    支持:1.添加边 x,y2.删边 x,y3.对于路径x,y上的所有节点的值加上w4.询问路径x,y上的所有节点的最大权值 分析:裸的lct...rev忘了清零死循环了两小时... 1:就是link操作 ...

  8. hdu 5398 动态树LCT

    GCD Tree Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  9. hdu 5002 (动态树lct)

    Tree Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. LeetCode5.最长回文子串 JavaScript

    给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &qu ...

  2. 数据库——MySQL——存储引擎

    现实生活中我们用来存储数据的文件有不同的类型,每种文件类型对应各自不同的处理机制:比如处理文本用txt类型,处理表格用excel,处理图片用png等.数据库中的表也应该有不同的类型,表的类型不同,会对 ...

  3. center os 创建用户、设置密码、修改用户、删除用户命令

    参考:https://www.linuxidc.com/Linux/2017-06/144916.htm useradd testuser  创建用户testuserpasswd testuser  ...

  4. iOS之网络请求及各类错误代码含义总结(包含AFN错误码大全)

    转自http://blog.csdn.net/wangyanchang21/article/details/50932191 在很多时候都会遇到错误, 还会带有一些 Error Code , 比如在各 ...

  5. iOS之报错“Cannot create __weak reference in file using manual reference counting”解决办法

    解决的办法:在Build Settings--------->Aplle LLVM8.0 - Language - Objectibe-C------------->Weak Refere ...

  6. 记录JavaScript的util.js类库

    工作中用到的, 不断做为积累, 以后能用到. 也感谢前辈们.  定义Util对象 var MyUtil = new Object(); 从url中获取参数 //从url中获取参数 function G ...

  7. python查找目录及子目录下特定文件

    写这篇博客的缘由: 面试归来翻脉脉发现一个陌生的朋友提出一个面试题,设计实现遍历目录及子目录,抓取.pyc文件. 并贴出两种实现方法: 个人感觉,这两种方法中规中矩,不像是python的风格.pyth ...

  8. cefsharp作为采集工具(学习笔记)

    cefsharp(webkit内核)浏览器替代webbrowser用来采集页面数据. 需要在页面form加载完毕,用异步方式自动获取sourcecode. 由于国内cefsharp的资料相对比较少,在 ...

  9. 【Linux】wget: command not found的两种解决方法

    1.rpm 安装 下载wget的RPM包: http://mirrors.163.com/centos/6.8/os/x86_64/Packages/wget-1.12-8.el6.x86_64.rp ...

  10. 配置vue-devtools调试工具

    1. 通过 Git 克隆项目到本地 git clone https://github.com/vuejs/vue-devtools.git 2. Git 进入到 vue-devtools 所在目录,然 ...