本文翻译自文章: Pandas Cheat Sheet - Python for Data Science

,同时添加了部分注解。

对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。

如果你想学习Pandas,建议先看两个网站。

(1)官网: Python Data Analysis Library

(2)十分钟入门Pandas: 10 Minutes to pandas

在第一次学习Pandas的过程中,你会发现你需要记忆很多的函数和方法。所以在这里我们汇总一下 Pandas官方文档中比较常用的函数和方法,以方便大家记忆。同时,我们提供一个PDF版本,方便大家打印。 pandas-cheat-sheet.pdf

关键缩写和包导入

在这个速查手册中,我们使用如下缩写:

df:任意的Pandas DataFrame对象

同时我们需要做如下的引入:

import pandas as pd

导入数据

  • pd.read_csv(filename):从CSV文件导入数据
  • pd.read_table(filename):从限定分隔符的文本文件导入数据
  • pd.read_excel(filename):从Excel文件导入数据
  • pd.read_sql(query, connection_object):从SQL表/库导入数据
  • pd.read_json(json_string):从JSON格式的字符串导入数据
  • pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格
  • pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()
  • pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据

导出数据

  • df.to_csv(filename):导出数据到CSV文件
  • df.to_excel(filename):导出数据到Excel文件
  • df.to_sql(table_name, connection_object):导出数据到SQL表
  • df.to_json(filename):以Json格式导出数据到文本文件

创建测试对象

  • pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象
  • pd.Series(my_list):从可迭代对象my_list创建一个Series对象
  • df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引

查看、检查数据

  • df.head(n):查看DataFrame对象的前n行
  • df.tail(n):查看DataFrame对象的最后n行
  • df.shape():查看行数和列数
  • http:// df.info():查看索引、数据类型和内存信息
  • df.describe():查看数值型列的汇总统计
  • s.value_counts(dropna=False):查看Series对象的唯一值和计数
  • df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数

数据选取

  • df[col]:根据列名,并以Series的形式返回列
  • df[[col1, col2]]:以DataFrame形式返回多列
  • s.iloc[0]:按位置选取数据
  • s.loc['index_one']:按索引选取数据
  • df.iloc[0,:]:返回第一行
  • df.iloc[0,0]:返回第一列的第一个元素

数据清理

  • df.columns = ['a','b','c']:重命名列名
  • pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组
  • pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
  • df.dropna():删除所有包含空值的行
  • df.dropna(axis=1):删除所有包含空值的列
  • df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行
  • df.fillna(x):用x替换DataFrame对象中所有的空值
  • s.astype(float):将Series中的数据类型更改为float类型
  • s.replace(1,'one'):用‘one’代替所有等于1的值
  • s.replace([1,3],['one','three']):用'one'代替1,用'three'代替3
  • df.rename(columns=lambda x: x + 1):批量更改列名
  • df.rename(columns={'old_name': 'new_ name'}):选择性更改列名
  • df.set_index('column_one'):更改索引列
  • df.rename(index=lambda x: x + 1):批量重命名索引

数据处理:Filter、Sort和GroupBy

  • df[df[col] > 0.5]:选择col列的值大于0.5的行
  • df.sort_values(col1):按照列col1排序数据,默认升序排列
  • df.sort_values(col2, ascending=False):按照列col1降序排列数据
  • df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据
  • df.groupby(col):返回一个按列col进行分组的Groupby对象
  • df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象
  • df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值
  • df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
  • df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值
  • data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
  • data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max

数据合并

  • df1.append(df2):将df2中的行添加到df1的尾部
  • df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
  • df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join

数据统计

  • df.describe():查看数据值列的汇总统计
  • df.mean():返回所有列的均值
  • df.corr():返回列与列之间的相关系数
  • df.count():返回每一列中的非空值的个数
  • df.max():返回每一列的最大值
  • df.min():返回每一列的最小值
  • df.median():返回每一列的中位数
  • df.std():返回每一列的标准差

源自:http://www.qingpingshan.com/rjbc/dashuju/228593.html

pandas 中文快速查询手册的更多相关文章

  1. (私人收藏)[开发必备]最全JQuery离线快速查找手册(可查询可学习,带实例)

    [开发必备]最全JQuery离线快速查找手册(可查询可学习,带实例) https://pan.baidu.com/s/16bUd4iA3p0c5RHbzaC60IQe4zh

  2. (私人收藏)[开发必备]最全Java离线快速查找手册(可查询可学习,带实例)

    (私人收藏)[开发必备]最全Java离线快速查找手册(可查询可学习,带实例) https://pan.baidu.com/s/1L54VuFwCdKVnQGVc8vD1TQnwmj java手册 Ja ...

  3. 一种快速查询多点DS18B20温度的方法(转)

    源:http://hi.baidu.com/james_xiao/item/79b961c90623093e45941623 一种快速查询多点DS18B20温度的方法 引言      为了满足实时性要 ...

  4. .NET Core 开源工具 IPTools - 快速查询 IP 地理位置、经纬度信息

    快速查询IP信息,支持国内和国外IP信息查询,支持查询经纬度,地理位置最高支持到城市. 1. IPTools.China 快速查询中国IP地址信息,包含国家.省份.城市.和网络运营商.非中国IP只支持 ...

  5. mysql 常用 sql 语句 - 快速查询

    Mysql 常用 sql 语句 - 快速查询 1.mysql 基础 1.1 mysql 交互         1.1.1 mysql 连接             mysql.exe -hPup    ...

  6. 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册

    <zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...

  7. Github快速入门手册

    最近在试用Github,开源的思想也让人觉得把一些经验分享出来是非常好的事情.附件是doc文件,如有需要请注意查收.希望能对你有帮助. GITHUB基于互联网的版本控制快速入门手册 如有不妥,欢迎指正 ...

  8. 快速查询Python脚本语法

    /********************************************************************* * 快速查询Python脚本语法 * 说明: * Char ...

  9. PLSQL显示乱码-无法进行中文条件查询解决

    PLSQL显示乱码-无法进行中文条件查询解决 原因: PLSQL乱码问题皆是ORACLE服务端字符集编码与PLSQL端字符集编码不一致引起.类似乱码问题都可以从编码是否一致上面去考虑. 解决: 1. ...

随机推荐

  1. python并发之IO模型(一)

    事件驱动模型 协程:遇到IO操作就切换. 但什么时候切回去呢?怎么确定IO操作完了? 很多程序员可能会考虑使用“线程池”或“连接池”.“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程, ...

  2. MySQL 5.6 死锁演示 及 日志分析

    1.  表结构 CREATE TABLE dead_update ( a ) ', PRIMARY KEY (a) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; ), ...

  3. 005-MYSQL数据库设计原则

    1.核心原则 不在数据库做运算; cpu计算务必移至业务层; 控制列数量(字段少而精,字段数建议在20以内); 平衡范式与冗余(效率优先:往往牺牲范式) 拒绝3B(拒绝大sql语句:big sql.拒 ...

  4. SUBMIT RM07DOCS【MB51】 获取返回清单,抓取标准报表数据

    *&---------------------------------------------------------------------* *& Report YT_SUBMIT ...

  5. outlook 设置分类收邮件

    打开outlook,工具---->“规则和通知”.建相应的规则即可.

  6. 当退出python时,是否释放全部内存

    答案是no,循环引用其他对象或引用自全局命名空间的对象的模块,在python退出时并非完全释放 另外,也不会释放c库保留的内存部分

  7. time函数计算时间

    学过C语言的都知道有个time函数可以计算时间, 也好像知道time(NULL)返回的是一个距离1970年1月1日0时0分0秒的秒数. #include <stdio.h> #includ ...

  8. 树莓派打造对话机器人 Python(转)

    工具列表 1. **树莓派**(型号不要求,本人使用的是3B) 2. **usb麦克风**(某宝有卖,我就不打广告了) 用来录音 3. **音响或者喇叭**(某宝也有卖) 用来播放 以上就是需要的工具 ...

  9. nodejs爬虫selenium

    6.元素操作 查找元素 使用操作如何找到页面元素Webdriver的findElement方法可以用来找到页面的某个元素,最常用的方法是用id和name查找.下面介绍几种比较常用的方法. By ID假 ...

  10. HTML如何禁止文本框输入

    禁止文本框输入有以下两种方法: 1,设置input为只读状态,代码如下: <input readonly="readonly" value="test1" ...