本文翻译自文章: Pandas Cheat Sheet - Python for Data Science

,同时添加了部分注解。

对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。

如果你想学习Pandas,建议先看两个网站。

(1)官网: Python Data Analysis Library

(2)十分钟入门Pandas: 10 Minutes to pandas

在第一次学习Pandas的过程中,你会发现你需要记忆很多的函数和方法。所以在这里我们汇总一下 Pandas官方文档中比较常用的函数和方法,以方便大家记忆。同时,我们提供一个PDF版本,方便大家打印。 pandas-cheat-sheet.pdf

关键缩写和包导入

在这个速查手册中,我们使用如下缩写:

df:任意的Pandas DataFrame对象

同时我们需要做如下的引入:

import pandas as pd

导入数据

  • pd.read_csv(filename):从CSV文件导入数据
  • pd.read_table(filename):从限定分隔符的文本文件导入数据
  • pd.read_excel(filename):从Excel文件导入数据
  • pd.read_sql(query, connection_object):从SQL表/库导入数据
  • pd.read_json(json_string):从JSON格式的字符串导入数据
  • pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格
  • pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()
  • pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据

导出数据

  • df.to_csv(filename):导出数据到CSV文件
  • df.to_excel(filename):导出数据到Excel文件
  • df.to_sql(table_name, connection_object):导出数据到SQL表
  • df.to_json(filename):以Json格式导出数据到文本文件

创建测试对象

  • pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象
  • pd.Series(my_list):从可迭代对象my_list创建一个Series对象
  • df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引

查看、检查数据

  • df.head(n):查看DataFrame对象的前n行
  • df.tail(n):查看DataFrame对象的最后n行
  • df.shape():查看行数和列数
  • http:// df.info():查看索引、数据类型和内存信息
  • df.describe():查看数值型列的汇总统计
  • s.value_counts(dropna=False):查看Series对象的唯一值和计数
  • df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数

数据选取

  • df[col]:根据列名,并以Series的形式返回列
  • df[[col1, col2]]:以DataFrame形式返回多列
  • s.iloc[0]:按位置选取数据
  • s.loc['index_one']:按索引选取数据
  • df.iloc[0,:]:返回第一行
  • df.iloc[0,0]:返回第一列的第一个元素

数据清理

  • df.columns = ['a','b','c']:重命名列名
  • pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组
  • pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
  • df.dropna():删除所有包含空值的行
  • df.dropna(axis=1):删除所有包含空值的列
  • df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行
  • df.fillna(x):用x替换DataFrame对象中所有的空值
  • s.astype(float):将Series中的数据类型更改为float类型
  • s.replace(1,'one'):用‘one’代替所有等于1的值
  • s.replace([1,3],['one','three']):用'one'代替1,用'three'代替3
  • df.rename(columns=lambda x: x + 1):批量更改列名
  • df.rename(columns={'old_name': 'new_ name'}):选择性更改列名
  • df.set_index('column_one'):更改索引列
  • df.rename(index=lambda x: x + 1):批量重命名索引

数据处理:Filter、Sort和GroupBy

  • df[df[col] > 0.5]:选择col列的值大于0.5的行
  • df.sort_values(col1):按照列col1排序数据,默认升序排列
  • df.sort_values(col2, ascending=False):按照列col1降序排列数据
  • df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据
  • df.groupby(col):返回一个按列col进行分组的Groupby对象
  • df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象
  • df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值
  • df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
  • df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值
  • data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
  • data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max

数据合并

  • df1.append(df2):将df2中的行添加到df1的尾部
  • df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
  • df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join

数据统计

  • df.describe():查看数据值列的汇总统计
  • df.mean():返回所有列的均值
  • df.corr():返回列与列之间的相关系数
  • df.count():返回每一列中的非空值的个数
  • df.max():返回每一列的最大值
  • df.min():返回每一列的最小值
  • df.median():返回每一列的中位数
  • df.std():返回每一列的标准差

源自:http://www.qingpingshan.com/rjbc/dashuju/228593.html

pandas 中文快速查询手册的更多相关文章

  1. (私人收藏)[开发必备]最全JQuery离线快速查找手册(可查询可学习,带实例)

    [开发必备]最全JQuery离线快速查找手册(可查询可学习,带实例) https://pan.baidu.com/s/16bUd4iA3p0c5RHbzaC60IQe4zh

  2. (私人收藏)[开发必备]最全Java离线快速查找手册(可查询可学习,带实例)

    (私人收藏)[开发必备]最全Java离线快速查找手册(可查询可学习,带实例) https://pan.baidu.com/s/1L54VuFwCdKVnQGVc8vD1TQnwmj java手册 Ja ...

  3. 一种快速查询多点DS18B20温度的方法(转)

    源:http://hi.baidu.com/james_xiao/item/79b961c90623093e45941623 一种快速查询多点DS18B20温度的方法 引言      为了满足实时性要 ...

  4. .NET Core 开源工具 IPTools - 快速查询 IP 地理位置、经纬度信息

    快速查询IP信息,支持国内和国外IP信息查询,支持查询经纬度,地理位置最高支持到城市. 1. IPTools.China 快速查询中国IP地址信息,包含国家.省份.城市.和网络运营商.非中国IP只支持 ...

  5. mysql 常用 sql 语句 - 快速查询

    Mysql 常用 sql 语句 - 快速查询 1.mysql 基础 1.1 mysql 交互         1.1.1 mysql 连接             mysql.exe -hPup    ...

  6. 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册

    <zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...

  7. Github快速入门手册

    最近在试用Github,开源的思想也让人觉得把一些经验分享出来是非常好的事情.附件是doc文件,如有需要请注意查收.希望能对你有帮助. GITHUB基于互联网的版本控制快速入门手册 如有不妥,欢迎指正 ...

  8. 快速查询Python脚本语法

    /********************************************************************* * 快速查询Python脚本语法 * 说明: * Char ...

  9. PLSQL显示乱码-无法进行中文条件查询解决

    PLSQL显示乱码-无法进行中文条件查询解决 原因: PLSQL乱码问题皆是ORACLE服务端字符集编码与PLSQL端字符集编码不一致引起.类似乱码问题都可以从编码是否一致上面去考虑. 解决: 1. ...

随机推荐

  1. GAN综述

    生成式对抗模型GAN (Generativeadversarial networks) 是Goodfellow等[1]在 2014年提出的一种生成式模型,目前已经成为人工智能学界一个热门的研究方向,著 ...

  2. Python基础-生成器和迭代器

    生成器都是迭代器,迭代器不一定是生成器 def fansik(max): n, before, after = 0, 0, 1 while n < max: print(before) befo ...

  3. Python2 socket 多线程并发 TCPServer Demo

    #coding=utf-8 import socket import threading,getopt,sys,string opts, args = getopt.getopt(sys.argv[1 ...

  4. cqlsh script

    1.time类型 cqlsh> COPY my_keyspace.typetest from STDIN;Using 1 child processes Starting copy of my_ ...

  5. Java多线程(Java总结篇)

    Java总结篇:Java多线程 多线程作为Java中很重要的一个知识点,在此还是有必要总结一下的. 一.线程的生命周期及五种基本状态 关于Java中线程的生命周期,首先看一下下面这张较为经典的图: 上 ...

  6. 前端基础之JavaScript_(4)_js的作用域

    js作用域 作用域就是变量与函数的可访问范围,即作用域控制着变量与函数的可见性和生命周期.在JavaScript中,变量的作用域有全局作用域和局部作用域两种. js的作用域 1. 全局作用域(Glob ...

  7. Python 8 协程/异步IO

    协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来 ...

  8. PAT 天梯赛 L1-027. 出租 【模拟】

    题目链接 https://www.patest.cn/contests/gplt/L1-027 题意 给出一串电话号码,找出其中不同数字的个数,并且按递减顺序排列,然后 有一个index 数组,指出每 ...

  9. VC中添加消息响应函数

    1. 添加消息映射 2. 头文件中添加函数声明 3. 实现文件中添加函数定义

  10. 【leetcode刷题笔记】Single Number II

    Given an array of integers, every element appears three times except for one. Find that single one. ...