论文:https://github.com/ei1994/my_reference_library/tree/master/papers

  本文的贡献点如下:

  1. 提出了一个新的利用深度网络架构基于patch的匹配来明显的改善了效果;

  2. 利用更少的描述符,得到了比state-of-the-art更好的结果;

  3. 实验研究了该系统的各个成分的有效作用,表明,MatchNet改善了手工设计 和 学习到的描述符加上对比函数;

  4. 最后,作者 release 了训练的 MatchNet模型。

  网络框架:

  主要有如下几个成分:

  A:Feature Network.

  主要用于提取输入patch的特征,主要根据AlexNet改变而来,有些许变化。主要的卷积和pool层的两段分别有 preprocess layer 和 bottleneck layer,各自起到归一化数据和降维,防止过拟合的作用。激活函数:ReLU.

  B:Metric Network.

  主要用于feature Comparison,3层fc 加上 softmax,输出得到图像块相似度概率。

  C:Two-tower structure with tied parameters

  在训练阶段,特征网络用作“双塔”,共享参数。双塔的输出串联在一起作为度量网络的输入。The entire network is trained on labeled patch-pairs generated from the sampler to minimize the cross-entropy loss. 在预测的时候,这两个子网络A 和 B 方便的用在 two-stage pipeline. 如下图所示:

  D:The bottleneck layer

  用来减少特征表示向量的维度,尽量避免过拟合。在特征提取网络和全连接层之间,控制输入到全连接层的特征向量的维度。

  E:The preprocessing layer

  输入图像块预处理,归一化到(-1,1)之间。

  MatchNet 的具体参数如下表所示,注意Bottleneck 和 FC 中参数的选择。

  训练和预测:

  交叉熵损失,SGD优化,由于数据正负样本的不平衡性,会导致实验精度的降低,本文采用采样的训练方法,在一个batchsize中,选择一半正样本,一半负样本进行训练。

  特征网络和度量网络是联合训练的,使用交叉熵损失函数。在测试阶段,可以分开进行,先将图像块经过特征提取网络得到特征编码并保存,然后组合这些特征,输入到度量网络中得到N1*N2的得分矩阵。

  总结:

  1、MatchNet网络就是 siamese的双分支权重共享网络,与论文Learning to Compare Image Patches via Convolutional Neural Networks有共通之处。CNN提取图像块特征,FC学习度量特征的相似度。

  2、本文指出,在测试阶段,可以将特征网络和度量网络分开进行,避免匹配图像时特征提取的重复计算。首先得到图像块的特征编码保存,之后输入度量网络中,计算得到N1*N2的得分矩阵。

参考文献:

https://www.cnblogs.com/wangxiaocvpr/p/5515181.html

论文笔记 — MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching的更多相关文章

  1. 论文笔记之:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching CVPR  2015 本来都写到一半了,突然笔记本死机了 ...

  2. 配置和运行 MatchNet CVPR 2015 MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    配置和运行 MatchNet CVPR 2015 GitHub: https://github.com/hanxf/matchnet 最近一个同学在配置,测试这个网络,但是总是遇到各种问题. 我也尝试 ...

  3. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  4. 论文笔记:Rich feature hierarchies for accurate object detection and semantic segmentation

    在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程 ...

  5. 【论文笔记】多任务学习(Multi-Task Learning)

    1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就 ...

  6. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  7. 论文笔记:A Review on Deep Learning Techniques Applied to Semantic Segmentation

    A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Intr ...

  8. (论文笔记Arxiv2021)Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

    目录 摘要 1.引言 2.相关工作 3.方法 3.1局部特征聚合的再思考 3.2 曲线分组 3.3 曲线聚合和CurveNet 4.实验 4.1 应用细节 4.2 基准 4.3 消融研究 5.总结 W ...

  9. 论文笔记 Spatial contrasting for deep unsupervised learning

    在我们设计无监督学习模型时,应尽量做到 网络结构与有监督模型兼容 有效利用有监督模型的基本模块,如dropout.relu等 无监督学习的目标是为有监督模型提供初始化的参数,理想情况是"这些 ...

随机推荐

  1. Git 命令行帮助

    Git usage: git [--version] [--help] [-C <path>] [-c name=value] [--exec-path[=<path>]] [ ...

  2. QThread与多线程(比较清楚)

    QThread类为我们提供了一种平台无关的管理线程的方式.一个QThread对象管理应用程序中的一个线程,该线程从run()函数开始执行.并且,默认情况下,我们可以在run()函数中通过调用QThre ...

  3. JavaScript数据结构-树

    我认为这社会上,也不差钱好多人,可能好多人也不差权力.可是我认为能得到这样的满足的也不多. –郭小平<临汾红丝带学校校长> ​ 树是计算机科学中经经常使用到的一种数据结构. 树是一种非线性 ...

  4. linux c编程:System V消息队列一

    消息队列可以认为是一个消息链表,System V 消息队列使用消息队列标识符标识.具有足 够特权的任何进程都可以往一个队列放置一个消息,具有足够特权的任何进程都可以从一个给定队列读出一个消息.在某个进 ...

  5. java bio 之聊天室

    最近在复习java io相关知识 ,发现很多细节之前没学习到位,原理也没吃透,只能感叹本人愚钝. 复习到bio,顺手写了个简单的聊天室功能,并和大家分享下. 服务端: package io.QQ聊天室 ...

  6. phoneGap实现离线缓存

    引自:http://www.iteye.com/topic/1128173 正在做一个跨平台的应用,需要使用phonegap进行文件的一些基本操作. 需求如下:可以选择本地图片,或者从相机选择图片,并 ...

  7. 025_MapReduce样例Hadoop TopKey算法

    1.需求说明

  8. java中类名.class, class.forName(), getClass()区别

    Class对象的生成方式如下: 1.类名.class           说明: JVM将使用类装载器, 将类装入内存(前提是:类还没有装入内存),不做类的初始化工作.返回Class的对象 2.Cla ...

  9. QGIS3.0.3+Qt5.9+VS2015_x64编译

    QGIS3.0.3+Qt5.9+VS2015_x64编译 参考:https://blog.csdn.net/u010670734/article/details/80241615 https://ww ...

  10. idea ource 1.5 中不支持 switch 中存在字符串

    报错内容如下: Error:(49, 20) java: -source 1.5 中不支持 switch 中存在字符串, (请使用 -source 7 或更高版本以允许 switch 中存在字符串) ...