经典分水岭算法的 C++ 实现
这个程序是研一下学期的计算机视觉课程大作业,完成于 2013/06/16,是对 Soille 和 Vincent(1991)提出的模拟浸没的分水岭算法的实现,详见下面的报告。
源码托管在 Github 上:点击进入链接
可执行程序及测试图片:点击进入链接
一、算法概述:
分水岭算法是一种图像分割算法,本报告是对Soille和Vincent(1991)提出的模拟浸没的分水岭算法的实现,算法包括2个部分:第一个部分是排序;第二部分为泛洪。算法描述如下:
(1)将原图像转为二值图,对各像素点的灰度值进行从小到大排序,相同的灰度值为同一个层级。
(2)处理第一个层级所有的像素点,如果其邻域已经被标识属于某一个区域,则将这个像素加入一个先进先出的队列。
(3)先进先出队列非空时,弹出第一个元素。扫描该像素的邻域像素,如果其邻域像素的灰度属于同一层(灰度值相等),则根据邻域像素的标识来刷新该像素的标识。一直循环到队列为空。
(4)再次扫描当前灰度值层级的像素,如果还有像素未被标识,说明它是一个新的极小区域,则当前区域的值(当前区域的值从0开始计数)加1后赋值给该为标识的像素。然后从该像素出发继续执行步骤(3)的泛洪直至没有新的极小区域。
(5)返回步骤(2),处理下一个灰度值层级的像素,直至所有层级的像素都被处理。
二、算法实现(C++、opencv、VS2010):
1、主要类说明(具体说明见附录源码中的注释):
(1)WatershedPixel类:根据灰度值对图像像素进行排序。
(2)WatershedStructure类:用于存储像素点WatershedPixel,并生成各像素点的邻域像素。
(3)WaterShedAlgorithm类:分水岭核心算法,包括图像预处理,泛洪和分水线绘制。
2、使用说明:
在命令提示符(cmd)中进入ws.exe(分水岭算法的可执行文件)和图片所在文件夹,
输入:ws image_name
输出:
image_name_BW.jpg ——原图像对应的二值图
image_name_Gray.jpg ——原图像对应的灰度图
image_name_Gray_WS.jpg ——在灰度图中绘制的分水线
image_name_WS.jpg ——在黑色背景中绘制的分水线
3、其他说明:
本算法实现借助开源的opencv库对图像进行读取、输出和预处理(格式转换等),ws.exe运行时需要opencv相关的动态链接库(附件中的dll文件)。
三、算法测试:
1、灰度图:


2、彩色图:






四、结果分析:
(1)该算法实现相对简单,速度快,分割效果不错。
(2)但是在噪声影响下会出现过分割,可在执行算法之前进行预处理,比如平滑降噪,以及利用梯度。
(3)对细节太多的彩色图片存在过分割。
经典分水岭算法的 C++ 实现的更多相关文章
- python数字图像处理(19):骨架提取与分水岭算法
骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. m ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- 【十大经典数据挖掘算法】EM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...
- 【十大经典数据挖掘算法】AdaBoost
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 经典排序算法 – 插入排序Insertion sort
经典排序算法 – 插入排序Insertion sort 插入排序就是每一步都将一个待排数据按其大小插入到已经排序的数据中的适当位置,直到全部插入完毕. 插入排序方法分直接插入排序和折半插入排序两种, ...
- 【十大经典数据挖掘算法】Naïve Bayes
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 【十大经典数据挖掘算法】k-means
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
随机推荐
- 如何转换指定 波长 到 RGB 颜色?
//指定波长转换成RGBA颜色 std::vector<int> lambdaToColor(double lambda,double gamma = 0.8,double intensi ...
- 我的Android进阶之旅------>Android中如何高效率的进行简繁体转换
因为APP要做国际化适配,所以就需要顾及到香港和台湾都是使用繁体字,怎样快速便捷高效的把简体字转换成繁体字呢? 说实话我之前用的方法比较呆板,把每个需要转换的字符串进行在线翻译.今天突然发现word或 ...
- 斯坦福大学Andrew Ng - 机器学习笔记(3) -- 神经网络模型
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深 ...
- A+B和C (15)
时间限制 1000 ms 内存限制 32768 KB 代码长度限制 100 KB 判断程序 Standard (来自 小小) 题目描述 给定区间[-2的31次方, 2的31次方]内的3个整数A.B和C ...
- PyQt4调用UI文件
方法1,转换到py调用 指令 pyuic4 test.ui -o testUi.py 方法2.直接调用ui文件 # -*- coding: utf-8 -*- """ - ...
- 剑指offer 面试3题
面试3题: 题:数组中重复的数字 题目:在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复 ...
- 剑指offer 面试18题
面试18题: 题目:删除链表中的节点 题一:在O(1)时间内删除链表节点.给定单向链表的头指针和一个节点指针,定义一个函数在O(1)时间内删除该节点. 解题思路:我们要删除节点i,先把i的下一个节点j ...
- python常用模块——logger模块
python的logging模块提供了通用的日志系统,熟练使用logging模块可以方便开发者开发第三方模块或者是自己的python应用. python使用logging模块记录日志涉及四个主要的类: ...
- 妙用php中的register_shutdown_function和fastcgi_finish_request
前言 在php中又两个方法都是在请求快结束的时候执行.方法名分别是 register_shutdown_function和fastcgi_finish_request.虽然执行的时机差不多,但是功能和 ...
- $《第一行代码:Android》读书笔记——第9章 服务
(一)Service简介 服务适合执行那种不需要和用户交互而且还要长期运行的任务.所有的服务代码都是默认运行在主线程中,需要在服务内部手动添加子线程,在子线程中执行耗时任务. (二)线程 1.线程 ...