Hive数据导入——数据存储在Hadoop分布式文件系统中,往Hive表里面导入数据只是简单的将数据移动到表所在的目录中!
转自:http://blog.csdn.net/lifuxiangcaohui/article/details/40588929
这里介绍四种:
(1)、从本地文件系统中导入数据到Hive表;
(2)、从HDFS上导入数据到Hive表;
(3)、从别的表中查询出相应的数据并导入到Hive表中;
(4)、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中。
Hive提供的默认文件存储格式有textfile、sequencefile、rcfile等。用户也可以通过实现接口来自定义输入输的文件格式。
在实际应用中,textfile由于无压缩,磁盘及解析的开销都很大,一般很少使用。Sequencefile以键值对的形式存储的二进制的格式,其支持针对记录级别和块级别的压缩。rcfile是一种行列结合的存储方式(text file和sequencefile都是行表[row table]),其保证同一条记录在同一个hdfs块中,块以列式存储。一般而言,对于OLTP而言,行表优势大于列表,对于OLAP而言,列表的优势大于行表,特别容易想到当做聚合操作时,列表的复杂度将会比行表小的多,虽然单独rcfile的列运算不一定总是存在的,但是rcfile的高压缩率确实减少文件大小,因此实际应用中,rcfile总是成为不二的选择,达观数据平台在选择文件存储格式时也大量选择了rcfile方案。
一、从本地文件系统中导入数据到Hive表
先在Hive里面创建好表,如下:
- hive> create table wyp
- > (id int, name string,
- > age int, tel string)
- > ROW FORMAT DELIMITED
- > FIELDS TERMINATED BY '\t'
- > STORED AS TEXTFILE;
- OK
- Time taken: 2.832 seconds
复制代码
这个表很简单,只有四个字段,具体含义我就不解释了。本地文件系统里面有个/home/wyp/wyp.txt文件,内容如下:
- [wyp@master ~]$ cat wyp.txt
- 1 wyp 25 13188888888888
- 2 test 30 13888888888888
- 3 zs 34 899314121
复制代码
wyp.txt文件中的数据列之间是使用\t分割的,可以通过下面的语句将这个文件里面的数据导入到wyp表里面,操作如下:
- hive> load data local inpath 'wyp.txt' into table wyp;
- Copying data from file:/home/wyp/wyp.txt
- Copying file: file:/home/wyp/wyp.txt
- Loading data to table default.wyp
- Table default.wyp stats:
- [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 67]
- OK
- Time taken: 5.967 seconds
复制代码
这样就将wyp.txt里面的内容导入到wyp表里面去了,可以到wyp表的数据目录下查看,如下命令:
- hive> dfs -ls /user/hive/warehouse/wyp ;
- Found 1 items
- -rw-r--r--3 wyp supergroup 67 2014-02-19 18:23 /hive/warehouse/wyp/wyp.txt
复制代码
需要注意的是:
和我们熟悉的关系型数据库不一样,Hive现在还不支持在insert语句里面直接给出一组记录的文字形式,也就是说,Hive并不支持INSERT INTO …. VALUES形式的语句。
二、HDFS上导入数据到Hive表
从本地文件系统中将数据导入到Hive表的过程中,其实是先将数据临时复制到HDFS的一个目录下(典型的情况是复制到上传用户的HDFS home目录下,比如/home/wyp/),然后再将数据从那个临时目录下移动(注意,这里说的是移动,不是复制!)到对应的Hive表的数据目录里面。既然如此,那么Hive肯定支持将数据直接从HDFS上的一个目录移动到相应Hive表的数据目录下,假设有下面这个文件/home/wyp/add.txt,具体的操作如下:
- [wyp@master /home/q/hadoop-2.2.0]$ bin/hadoop fs -cat /home/wyp/add.txt
- 5 wyp1 23 131212121212
- 6 wyp2 24 134535353535
- 7 wyp3 25 132453535353
- 8 wyp4 26 154243434355
复制代码
上面是需要插入数据的内容,这个文件是存放在HDFS上/home/wyp目录(和一中提到的不同,一中提到的文件是存放在本地文件系统上)里面,我们可以通过下面的命令将这个文件里面的内容导入到Hive表中,具体操作如下:
- hive> load data inpath '/home/wyp/add.txt' into table wyp;
- Loading data to table default.wyp
- Table default.wyp stats:
- [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 215]
- OK
- Time taken: 0.47 seconds
- hive> select * from wyp;
- OK
- 5 wyp1 23 131212121212
- 6 wyp2 24 134535353535
- 7 wyp3 25 132453535353
- 8 wyp4 26 154243434355
- 1 wyp 25 13188888888888
- 2 test 30 13888888888888
- 3 zs 34 899314121
- Time taken: 0.096 seconds, Fetched: 7 row(s)
复制代码
从上面的执行结果我们可以看到,数据的确导入到wyp表中了!请注意load data inpath ‘/home/wyp/add.txt’ into table wyp;里面是没有local这个单词的,这个是和一中的区别。
三、从别的表中查询出相应的数据并导入到Hive表中
假设Hive中有test表,其建表语句如下所示:
- hive> create table test(
- > id int, name string
- > ,tel string)
- > partitioned by
- > (age int)
- > ROW FORMAT DELIMITED
- > FIELDS TERMINATED BY '\t'
- > STORED AS TEXTFILE;
- OK
- Time taken: 0.261 seconds
复制代码
大体和wyp表的建表语句类似,只不过test表里面用age作为了分区字段。对于分区,这里在做解释一下:
分区:在Hive中,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。比如wyp表有dt和city两个分区,则对应dt=20131218,city=BJ对应表的目录为/user/hive/warehouse/dt=20131218/city=BJ,所有属于这个分区的数据都存放在这个目录中。
下面语句就是将wyp表中的查询结果并插入到test表中:
- hive> insert into table test
- > partition (age='25')
- > select id, name, tel
- > from wyp;
- #####################################################################
- 这里输出了一堆Mapreduce任务信息,这里省略
- #####################################################################
- Total MapReduce CPU Time Spent: 1 seconds 310 msec
- OK
- Time taken: 19.125 seconds
- hive> select * from test;
- OK
- 5 wyp1 131212121212 25
- 6 wyp2 134535353535 25
- 7 wyp3 132453535353 25
- 8 wyp4 154243434355 25
- 1 wyp 13188888888888 25
- 2 test 13888888888888 25
- 3 zs 899314121 25
- Time taken: 0.126 seconds, Fetched: 7 row(s)
复制代码
这里做一下说明:
我们知道我们传统数据块的形式insert into table values(字段1,字段2),这种形式hive是不支持的。
通过上面的输出,我们可以看到从wyp表中查询出来的东西已经成功插入到test表中去了!如果目标表(test)中不存在分区字段,可以去掉partition (age=’25′)语句。当然,我们也可以在select语句里面通过使用分区值来动态指明分区:
- hive> set hive.exec.dynamic.partition.mode=nonstrict;
- hive> insert into table test
- > partition (age)
- > select id, name,
- > tel, age
- > from wyp;
- #####################################################################
- 这里输出了一堆Mapreduce任务信息,这里省略
- #####################################################################
- Total MapReduce CPU Time Spent: 1 seconds 510 msec
- OK
- Time taken: 17.712 seconds
- hive> select * from test;
- OK
- 5 wyp1 131212121212 23
- 6 wyp2 134535353535 24
- 7 wyp3 132453535353 25
- 1 wyp 13188888888888 25
- 8 wyp4 154243434355 26
- 2 test 13888888888888 30
- 3 zs 899314121 34
- Time taken: 0.399 seconds, Fetched: 7 row(s)
复制代码
这种方法叫做动态分区插入,但是Hive中默认是关闭的,所以在使用前需要先把hive.exec.dynamic.partition.mode设置为nonstrict。当然,Hive也支持insert overwrite方式来插入数据,从字面我们就可以看出,overwrite是覆盖的意思,是的,执行完这条语句的时候,相应数据目录下的数据将会被覆盖!而insert into则不会,注意两者之间的区别。例子如下:
- hive> insert overwrite table test
- > PARTITION (age)
- > select id, name, tel, age
- > from wyp;
复制代码
更可喜的是,Hive还支持多表插入,什么意思呢?在Hive中,我们可以把insert语句倒过来,把from放在最前面,它的执行效果和放在后面是一样的,如下:
- hive> show create table test3;
- OK
- CREATE TABLE test3(
- id int,
- name string)
- Time taken: 0.277 seconds, Fetched: 18 row(s)
- hive> from wyp
- > insert into table test
- > partition(age)
- > select id, name, tel, age
- > insert into table test3
- > select id, name
- > where age>25;
- hive> select * from test3;
- OK
- 8 wyp4
- 2 test
- 3 zs
- Time taken: 4.308 seconds, Fetched: 3 row(s)
复制代码
可以在同一个查询中使用多个insert子句,这样的好处是我们只需要扫描一遍源表就可以生成多个不相交的输出。这个很酷吧!
四、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中
在实际情况中,表的输出结果可能太多,不适于显示在控制台上,这时候,将Hive的查询输出结果直接存在一个新的表中是非常方便的,我们称这种情况为CTAS(create table .. as select)如下:
- hive> create table test4
- > as
- > select id, name, tel
- > from wyp;
- hive> select * from test4;
- OK
- 5 wyp1 131212121212
- 6 wyp2 134535353535
- 7 wyp3 132453535353
- 8 wyp4 154243434355
- 1 wyp 13188888888888
- 2 test 13888888888888
- 3 zs 899314121
- Time taken: 0.089 seconds, Fetched: 7 row(s)
复制代码
数据就插入到test4表中去了,CTAS操作是原子的,因此如果select查询由于某种原因而失败,新表是不会创建的!
Hive数据导入——数据存储在Hadoop分布式文件系统中,往Hive表里面导入数据只是简单的将数据移动到表所在的目录中!的更多相关文章
- 在这个应用中,我使用了 MQ 来处理异步流程、Redis 缓存热点数据、MySQL 持久化数据,还有就是在系统中调用另外一个业务系统的接口,对我的应用来说这些都是属于 RPC 调用,而 MQ、MySQL 持久化的数据也会存在于一个分布式文件系统中,他们之间的调用也是需要用 RPC 来完成数据交互的。
在这个应用中,我使用了 MQ 来处理异步流程.Redis 缓存热点数据.MySQL 持久化数据,还有就是在系统中调用另外一个业务系统的接口,对我的应用来说这些都是属于 RPC 调用,而 MQ.MySQ ...
- Hadoop分布式文件系统
在一个经典的数据架构中,Hadoop是处理复杂数据流的核心.数据从各种系统中收集而来,并汇总导入到Hadoop分布式文件系统HDFS中,然后通过MapReduce或者其它基于MapReduce封装的语 ...
- 初识hadoop --- (分布式文件系统 + 分块计算)
[转载] + 整理 2016-11-18 使用范围: Hadoop典型应用有:搜索.日志处理.推荐系统.数据分析.视频图像分析.数据保存等. Hadoop历史 雏形开始于2002年的Apache的Nu ...
- Hadoop 分布式文件系统:架构和设计
引言 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时,它和其他的分布式文件系统 ...
- Hadoop 分布式文件系统 - HDFS
当数据集超过一个单独的物理计算机的存储能力时,便有必要将它分不到多个独立的计算机上.管理着跨计算机网络存储的文件系统称为分布式文件系统.Hadoop 的分布式文件系统称为 HDFS,它 是为 以流式数 ...
- 【官方文档】Hadoop分布式文件系统:架构和设计
http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_design.html 引言 前提和设计目标 硬件错误 流式数据访问 大规模数据集 简单的一致性模型 “移动计 ...
- 在Hadoop分布式文件系统的索引和搜索
FROM:http://www.drdobbs.com/parallel/indexing-and-searching-on-a-hadoop-distr/226300241?pgno=3 在今天的信 ...
- Hadoop分布式文件系统HDFS详解
Hadoop分布式文件系统即Hadoop Distributed FileSystem. 当数据集的大小超过一台独立的物理计算机的存储能力时,就有必要对它进行分区(Partition)并 ...
- Hadoop分布式文件系统HDFS的工作原理
Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应 ...
随机推荐
- python——random模块
用法示例: import random # 1)随机小数 print(random.random()) # 获取大于0且小于1 之间的小数 random.random() print(random.u ...
- Android系统移植与调试之------->如何修改Android系统默认显示【开发者选项】并默认打开【USB调试】和【未知来源】开关
今天有个用户对[设置]有个特殊的要求,即: 1.开机的时候默认显示[开发者选项]并打开[USB调试]开关 ([Developer options]-->[USB debugging]) 2 ...
- Android-自己定义meta-data扩展数据
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/wwj_748/article/details/25079991 Android-自己定义meta-d ...
- 3.2 使用STC89C52控制MC20发送短信
需要准备的硬件 MC20开发板 1个 https://item.taobao.com/item.htm?id=562661881042 GSM/GPRS天线 1根 https://item.taoba ...
- 剑指offer 面试32题
面试32题: 题目:从上到下打印二叉树 题:不分行从上到下打印二叉树 解题代码: # -*- coding:utf-8 -*- # class TreeNode: # def __init__(sel ...
- CSS 中z-index全解析(摘自阿里西西)
z-index全解析 Z-index属性决定了一个HTML元素的层叠级别.元素层叠级别是相对于元素在Z轴上(与X轴Y轴相对照)的位置而言.一个更高的Z-index值意味着这个元素在叠层顺序中会更靠近顶 ...
- openstack ha 部署
一.控制节点架构如下图: 二.初始化环境: 1.配置IP地址: 1.节点1:ip addr add dev eth0 192.168.142.110/24 echo 'ip addr add dev ...
- 012_Eclipse中使用 HDFS URL API 事例介绍
本事例其实和使用hdfs FileSystem API差不多,FileSystem API也是通过解释成URL在hdfs上面执行的,性质相同,但是实际中用 的fFileSystem会多一点,源码如下: ...
- volatile笔记
总结自:https://www.cnblogs.com/dolphin0520/p/3920373.html 了解volatile之前得明白什么是原子性.可见性.有序性及指令重排序,详见:https: ...
- Java虚拟机的平台无关性与语言无关性
平台无关性 不同平台的不同java虚拟机,都执行同一种字节码文件,即Class文件 语言无关性 Java虚拟机不止能执行java程序,还有Clojure.Groovy.JRuby.Jython.Sca ...