基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。

 
Input
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000000)
Output
输出走法的数量 Mod 10^9 + 7。
Input示例
2 3
Output示例
3

//挺懵逼的,虽然看出动规后是个杨辉三角,但不知道
杨辉三角的性质,第 n 行 第 m 位为 C(n-1,m-1) 这也是组合数递推的性质 C(n,m)=C(n-1,m)+C(n-1,m-1)
输出 C(n+m-2,m-1) 即可
 #include <bits/stdc++.h>
using namespace std;
#define LL long long
#define MOD 1000000007 LL n,m; LL qk_mi(LL a,LL b)
{
LL res=;
while (b)
{
if (b&) res = res*a%MOD;
a=a*a%MOD;
b/=;
}
return res;
} LL J(int x)
{
LL res=;
for (int i=;i<=x;i++)
res=res*i%MOD;
return res;
} LL C(LL x, LL y)
{
return J(x)*qk_mi(J(y)*J(x-y)%MOD,MOD-)%MOD;
} int main()
{
scanf("%lld%lld",&n,&m);
LL ans = C(n+m-,m-);
printf("%lld",ans);
return ;
}
 

1119 机器人走方格 V2(组合)的更多相关文章

  1. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  2. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  3. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  4. 1119 机器人走方格 V2

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...

  5. 1119 机器人走方格 V2 (组合数学)

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开 ...

  6. 51nod 1119 机器人走方格 V2 【组合数学】

    挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...

  7. 51nod1119 机器人走方格 V2

    终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...

  8. 51nod_1119:机器人走方格 V2

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 转化成杨辉三角就好辣@_@ #include< ...

  9. [51nod1119]机器人走方格V2

    解题关键: 1.此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$ 2.此题可用组合数学的思想考虑,总的步数一共有$n+m-2$ ...

随机推荐

  1. 什么是Pro*C/C++,嵌入式SQL,第一个pro*c程序,pro*c++,Makefile,Proc增删改查

     1 什么是Pro*C/C++ 1.通过在过程编程语言C/C++中嵌入SQL语句而开发出的应用程序 2.什么是嵌入式SQL 1.在通用编程语言中使用的SQL称为嵌入式SQL 2.在SQL标准中定义 ...

  2. Android创建JSON格式数据

    Android创建JSON格式数据 作为上一篇博客的补充,简单那解说了一下Android创建JSON格式数据的小Demo. 1. 创建JSON格式数据 对于Android创建JSON格式数据.因为An ...

  3. ios 中尝试多次请求

    -(void)tryRun { tryTimes++; id obj = [ASODataManager getAppleAccount]; if (obj) { __block FirstViewC ...

  4. java.lang.ClassCastException: java.util.ArrayList cannot be cast to java.util.Map

    1.错误描写叙述 java.lang.ClassCastException: java.util.ArrayList cannot be cast to java.util.Map at servic ...

  5. Audio简介

    本片只简单从硬件角度简介Audio AC97/HDA Audio总线分两种: (1)I2S (2)HDA HD Audio spec Audio verb table是用来初始化audio的,一个au ...

  6. Redis之Hash数据结构

    0.前言 redis是KV型的内存数据库, 数据库存储的核心就是Hash表, 我们执行select命令选择一个存储的db之后, 所有的操作都是以hash表为基础的, 下面会分析下redis的hash数 ...

  7. nginx中ngx_list的数据结构

    今天没事了,在查看nginx源代码中看到ngx_list的结构,发现设计为链表数组的形式,不知道为什么这样设计 struct ngx_list_part_s { void *elts;//指向数组的起 ...

  8. 字符串函数---strcmp()与strncmp()具体解释及实现

    一.strcmp()与strncmp() strcmp():strcmp(s1,s2);            比較两个字符串.        strncmp():strncmp(s1,s2);   ...

  9. CenterOS卸载和安装MYSQL

    1.首先在命令行输入mysql,看一下本地计算机上是否有mysql. 2.卸载mysql服务: 首先查看安装的rpm的包:rpm –qa |grep mysql    对之前的服务进行删除.rpm – ...

  10. iOS开发多线程篇 09 —NSOperation简单介绍

    iOS开发多线程篇—NSOperation简单介绍 一.NSOperation简介 1.简单说明 NSOperation的作⽤:配合使用NSOperation和NSOperationQueue也能实现 ...