Geodetic集合 c++
感谢某位不知名dalao的博客,我才知道怎么解题....
最开始连题意都读错了....这个故事告诉我们要好好读题
描述 Description
图G是一个无向连通图,没有自环,并且两点之间至多只有一条边。我们定义顶点v,u最短路径就是从v到u经过边最少的路径。所有包含在v-u的最短路径上的顶点被称为v-u的Geodetic顶点,这些顶点的集合记作I(v, u)。
我们称集合I(v, u)为一个Geodetic集合。
例如下图中,I(2, 5)={2, 3, 4, 5},I(1, 5)={1, 3, 5},I(2, 4)={2, 4}。
给定一个图G和若干点对v,u,请你分别求出I(v, u)。
输入格式 Input Format
第一行两个整数n,m,分别表示图G的顶点数和边数(顶点编号1-n)
下接m行,每行两个整数a,b表示顶点a和b之间有一条无向边。
第m+2行有一个整数k,表示给定的点对数。
下接k行,每行两个整数v,u。
输出格式 Output Format
共k行,每行对应输入文件中每一个点对v,u,按顶点编号升序输出I(v, u)。同一行的每个数之间用空格分隔。
样例输入 Sample Input
5 6
1 2
1 3
2 3
2 4
3 5
4 5
3
2 5
5 1
2 4
样例输出 Sample Output
2 3 4 5
1 3 5
2 4
思路挺简单,floyed一遍算出最短路径
然后再循环判断并记录集合内的点即可,然而实现看起来挺鬼畜!?感谢数据量不大吧.....
#include<bits/stdc++.h>
#define maxn 100
using namespace std;
struct node{
int x,y;
}a[];
int n,m,kk;
int fu[maxn][maxn],s[maxn][maxn];
int dis[maxn][maxn][maxn];
int main(){
cin>>n>>m;
memset(fu,,sizeof(fu));
for(int i=;i<=n;i++)
fu[i][i]=;
for(int i=;i<=m;i++){
int xx,yy;
cin>>xx>>yy;
fu[xx][yy]=;fu[yy][xx]=;
}
cin>>kk;
for(int i=;i<=kk;i++){
cin>>a[i].x>>a[i].y;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(fu[i][k]+fu[k][j]<fu[i][j])//floyed求最短路
fu[i][j]=fu[i][k]+fu[k][j];
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(fu[i][k]+fu[k][j]==fu[i][j])//因为已经完成松弛,所以如果得出如此条件判断,说明是最短路径
dis[i][j][++s[i][j]]=k;//i,j固定位置,数组s[i][j]记录经过点的个数,dis数组存储顶点
for(int i=;i<=kk;i++){
for(int j=;j<=s[a[i].x][a[i].y];j++)//枚举集合内的点的个数
cout<<dis[a[i].x][a[i].y][j]<<' ';
cout<<endl;
}
return ;
}
Geodetic集合 c++的更多相关文章
- Geodetic集合
图G是一个无向连通图,没有自环,并且两点之间至多只有一条边.我们定义顶点v,u最短路径就是从v到u经过边最少的路径.所有包含在v-u的最短路径上的顶点被称为v-u的Geodetic顶点,这些顶点的集合 ...
- 洛谷——P3906 Geodetic集合
P3906 Geodetic集合 题目描述 图G是一个无向连通图,没有自环,并且两点之间至多只有一条边.我们定义顶点v,u最短路径就是从v到u经过边最少的路径.所有包含在v-u的最短路径上的顶点被称为 ...
- java基础集合经典训练题
第一题:要求产生10个随机的字符串,每一个字符串互相不重复,每一个字符串中组成的字符(a-zA-Z0-9)也不相同,每个字符串长度为10; 分析:*1.看到这个题目,或许你脑海中会想到很多方法,比如判 ...
- .Net多线程编程—并发集合
并发集合 1 为什么使用并发集合? 原因主要有以下几点: System.Collections和System.Collections.Generic名称空间中所提供的经典列表.集合和数组都不是线程安全 ...
- 一起学 Java(三) 集合框架、数据结构、泛型
一.Java 集合框架 集合框架是一个用来代表和操纵集合的统一架构.所有的集合框架都包含如下内容: 接口:是代表集合的抽象数据类型.接口允许集合独立操纵其代表的细节.在面向对象的语言,接口通常形成一个 ...
- 编写高质量代码:改善Java程序的151个建议(第5章:数组和集合___建议75~78)
建议75:集合中的元素必须做到compareTo和equals同步 实现了Comparable接口的元素就可以排序,compareTo方法是Comparable接口要求必须实现的,它与equals方法 ...
- java基础_集合List与Set接口
List接口继承了Collection的方法 当然也有自己特有的方法向指定位置添加元素 add(索引,添加的元素); 移除指定索引的元素 remove(索引) 修改指定索引的元素 set ...
- Java基础Collection集合
1.Collection是所有集合的父类,在JDK1.5之后又加入了Iterable超级类(可以不用了解) 2.学习集合从Collection开始,所有集合都继承了他的方法 集合结构如图:
- 轻量级“集合”迭代器-Generator
Generator是PHP 5.5加入的新语言特性.但是,它似乎并没有被很多PHP开发者广泛采用.因此,在我们了解PHP 7对Generator的改进之前,我们先通过一个简单却显而易见的例子来了解下G ...
随机推荐
- Educational Codeforces Round 53 Div. 2翻车记
A:差点开场懵逼.只要有相邻两位不同就可以作为答案. #include<iostream> #include<cstdio> #include<cmath> #in ...
- 从统计学statistics的观点看概率分布
已知数据x,希望得到未知label y,即得到映射x-->y: 几个概念: 1)p(x): data distribution 数据分布 2)p(y): prior distribution 先 ...
- 2017 Multi-University Training Contest - Team 3 Kanade's trio(字典树+组合数学)
题解: 官方题解太简略了orz 具体实现的方式其实有很多 问题就在于确定A[j]以后,如何找符合条件的A[i] 这里其实就是要提前预处理好 我是倒序插入点的,所以要沿着A[k]爬树,找符合的A[i] ...
- [洛谷P2604][ZJOI2010]网络扩容
题目大意:给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小费用. 题解 ...
- PyQt5学习--基本窗口控件--QMainWindow
QMainWindow主窗口为用户提供一个应用程序框架,它有自己的布局,可以在布局中添加控件.比如将工具栏.菜单栏和状态栏等添加到布局管理器中. 窗口类型介绍 QMainWindow.QWidget和 ...
- [Leetcode] remove element 删除元素
Given an array and a value, remove all instances of that value in place and return the new length. T ...
- ionic2 手风琴效果
user.ts import { Component } from '@angular/core';import { IonicPage, NavController, NavParams } fro ...
- 我用JAVA做了个简易图像相似度计算器
简单说两句: 笔主利用这个七夕前后两天的寂寞时光,用JAVA磨了一个简单的图像相似度计算小程序,就在刚才终于纠结完毕,输出了1.0版本,小小的满足了一下可怜的虚荣心..→_→ 使用最简单最基础的感知哈 ...
- 2016广东工业大学校赛 E题 GDUT-oj1173
Problem E: 积木积水 Description 现有一堆边长为1的已经放置好的积木,小明(对的,你没看错,的确是陪伴我们成长的那个小明)想知道当下雨天来时会有多少积水.小明又是如此地喜欢二次元 ...
- POJ 3104 Drying(二分
Drying Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22163 Accepted: 5611 Descripti ...