山东省第七届省赛 D题:Swiss-system tournament(归并排序)
Description
A Swiss-system tournament is a tournament which uses a non-elimination format. The first tournament of this type was a chess tournament in Zurich in 1895, hence the name "Swiss system". The tournament will be held based on following rules.
2*N contestants (indexed 1, 2, ..., 2*N) will have R rounds matches. Before the first round, every contestant has an origin score. After every match, winner will get 1 score and loser will get 0 score. Before and after every round, contestants will be sorted by their scores in descending order. Two contestants with the same score will be sorted by their index with ascending order.
In every round, contestants will have match based on the sorted list. The first place versus the second place, the third place versus the forth place, ..., the Kth place versus the (K + 1)th place, ..., the (2*N - 1)th place versus (2*N)th place.
Now given the origin score and the ability of every contestant, we want to know the index of the Qth place contestant. We ensured that there won’t be two contestants with the same ability and the contestant with higher ability will always win the match.
Input
Multiple test cases. The first line contains a positive integer T (T<=10) indicating the number of test cases.
For each test case, the first line contains three positive integers N (N <= 100,000), R (R <= 50), Q (Q <= 2*N), separated by space.
The second line contains 2*N non-negative integers, s1, s2, ..., s2*N, si (si<= 108) indicates the origin score of constant indexed i.
The third line contains 2*N positive integers, a1, a2, ..., a2*N, ai (ai<= 108) indicates the ability of constant indexed i.
Output
One line per case, an integer indicates the index of the Qth place contestant after R round matches.
Sample Input
1 2 4 2 7 6 6 7 10 5 20 15
Sample Output
1
题意:
给出2*n个人,每次第1个人和第2个人比赛,第3个人和第4个人比赛…进行r轮比赛,每轮比完赛都进行排名,求出最后第q名是谁。给出每个人的积分 s[i],每个人的能力a[i],能力大的获胜,获胜的加1分,输了的不加分。
题解:
此题利用归并的思想,每轮比赛将赢者放一组,输者放一组,然后进行合并。
代码:
#include <bits/stdc++.h> #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> #include <vector> #include <map> #include <set> #include <bitset> #include <queue> #include <deque> #include <stack> #include <iomanip> #include <cstdlib> using namespace std; #define is_lower(c) (c>='a' && c<='z') #define is_upper(c) (c>='A' && c<='Z') #define is_alpha(c) (is_lower(c) || is_upper(c)) #define is_digit(c) (c>='0' && c<='9') #define min(a,b) ((a)<(b)?(a):(b)) #define max(a,b) ((a)>(b)?(a):(b)) #define IO ios::sync_with_stdio(0);\ cin.tie();\ cout.tie(); #define For(i,a,b) for(int i = a; i <= b; i++) typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<int> vi; const ll inf=0x3f3f3f3f; ; const ll inf_ll=(ll)1e18; const ll mod=1000000007LL; ; ; struct node { int pos; int ability; int score; }q[*N+],Q[*N+]; bool cmp(node a,node b) { if(a.score == b.score) return a.pos<b.pos; return a.score>b.score; } int n,r,p; int main() { int T; cin>>T; while(T--) { ,r1 = ; scanf("%d%d%d",&n,&r,&p); ; i <= n * ; i++) { scanf("%d",&q[i].score); q[i].pos = i; } ; i <= n * ; i++) scanf("%d",&q[i].ability); sort(q+,q++*n,cmp); ; j <= r; j++){ l1 = ;r1 = n; ; i <= * n; i += ) { ].ability) { q[i].score++; Q[++l1] = q[i]; Q[++r1] = q[i+]; }else { q[i+].score++; Q[++l1] = q[i+]; Q[++r1] = q[i]; } } ; ,rr=n+; while(ll<=l1&&rr<=r1){ if(Q[ll].score == Q[rr].score) { if(Q[ll].pos<Q[rr].pos) q[++flag] = Q[ll++]; else q[++flag] = Q[rr++]; }else { if(Q[ll].score>Q[rr].score) q[++flag] = Q[ll++]; else q[++flag] = Q[rr++]; } } while(ll<=l1) q[++flag] = Q[ll++]; while(rr<=r1) q[++flag] = Q[rr++]; } printf("%d\n",q[p].pos); } ; }
山东省第七届省赛 D题:Swiss-system tournament(归并排序)的更多相关文章
- 山东省第七届ACM竞赛 J题 Execution of Paladin (题意啊)
题意:鱼人是炉石里的一支强大种族,在探险者协会里,圣骑士有了一张新牌,叫亡者归来,效果是召唤本轮游戏中7个已死鱼人.如果死掉的不足7个,那么召唤的数量就会不足7. 鱼人有很多,下面的4个是: 寒光智者 ...
- Sdut 2164 Binomial Coeffcients (组合数学) (山东省ACM第二届省赛 D 题)
Binomial Coeffcients TimeLimit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 输入 输出 示例输入 1 1 10 2 9 ...
- Sdut 2165 Crack Mathmen(数论)(山东省ACM第二届省赛E 题)
Crack Mathmen TimeLimit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Since mathmen take security ...
- ACM Sdut 2158 Hello World!(数学题,排序) (山东省ACM第一届省赛C题)
题目描述 We know thatIvan gives Saya three problems to solve (Problem F), and this is the firstproblem. ...
- 山东省第七届ACM竞赛 C题 Proxy (Dijkstra算法,单源路径最短问题)
题意:给定0-n+1个点,和m条边,让你找到一条从0到n+1的最短路,输出与0相连的结点... 析:很明显么,是Dijkstra算法,不过特殊的是要输出与0相连的边,所以我们倒着搜,也是从n+1找到0 ...
- 山东省第六届省赛 H题:Square Number
Description In mathematics, a square number is an integer that is the square of an integer. In other ...
- 山东省第七届ACM省赛------Memory Leak
Memory Leak Time Limit: 2000MS Memory limit: 131072K 题目描述 Memory Leak is a well-known kind of bug in ...
- 山东省第七届ACM省赛------Reversed Words
Reversed Words Time Limit: 2000MS Memory limit: 131072K 题目描述 Some aliens are learning English. They ...
- 山东省第七届ACM省赛------Triple Nim
Triple Nim Time Limit: 2000MS Memory limit: 65536K 题目描述 Alice and Bob are always playing all kinds o ...
随机推荐
- WCF扩展记录服务调用时间
WCF 提供了许多扩展点供开发人员自定义运行时行为. WCF 在 Channel Layer 之上还提供了一个高级运行时,主要是针对应用程序开发人员.在 WCF 文档中,它常被称为服务模型层(Serv ...
- chrome & dark theme
chrome & dark theme Dark Reader Extensions https://darkreader.org/help/en/ https://chrome.google ...
- Hibernate常用方法之_查询
1.使用session的get方法 public User getUser(int id){ Session session = null; User user = null; try { sessi ...
- BZOJ4446 SCOI2015小凸玩密室(树形dp)
设f[i][j]为由根进入遍历完i子树,最后一个到达的点是j时的最小代价,g[i][j]为由子树内任意一点开始遍历完i子树,最后一个到达的点是j时的最小代价,因为是一棵完全二叉树,状态数量是nlogn ...
- SRM710 div1 ReverseMancala(trick)
题目大意, 给定一个有n个点的环,n不超过10,每个点上有一个权重 起始时权重将会给出,然后有2种操作 第一种操作是,选择一个位置i,获得权重w = a[i],把a[i]变成0,然后接下来在环上顺着走 ...
- JavaScript十大经典排序算法
排序算法说明 (1)排序的定义:对一序列对象根据某个关键字进行排序: 输入:n个数:a1,a2,a3,…,an输出:n个数的排列:a1’,a2’,a3’,…,an’,使得a1’ 再讲的形象点就是排排坐 ...
- 【POJ 1201 Intervals】
Time Limit: 2000MSMeamory Limit: 65536K Total Submissions: 27949Accepted: 10764 Description You are ...
- NEYC 2017 游记
day 1: result: sum_rank: 11 school_rank:1 水题在你高估的时候就已经不水了 sum:有个快速乘类似快速幂: int ans=0; ...
- HDU - 1880 魔咒词典~哈希入门
哈利波特在魔法学校的必修课之一就是学习魔咒.据说魔法世界有100000种不同的魔咒,哈利很难全部记住,但是为了对抗强敌,他必须在危急时刻能够调用任何一个需要的魔咒,所以他需要你的帮助. 给你一部魔咒词 ...
- rpm的使用:查询、安装、卸载、升级
RPM 有五种操作模式,分别为:安装.卸载.升级.查询和验证. RPM 安装操作 命令: rpm -i 需要安装的包文件名 举例如下: rpm -i example.rpm 安装 example.rp ...