【算法】动态规划+组合数学

【题意】有一个h行w列的棋盘,定义一些格子为不能走的黑点,现在要求从左上角走到右下角的方案数。

【题解】

大概能考虑到离散化黑点后,中间的空格子直接用组合数计算。

然后解决容斥问题就很重要了。

定义f[i]为走到第i个黑点且不经过其它黑点的方案数。

f[i]=calc(x[i]-1,y[i]-1)-Σ(f[j]*calc(x[i]-x[j],y[i]-y[j])),j<i&&x[j]<=x[i]&&y[j]<=y[i]。

calc(n,m)表示向右n步,向下m步的方案数,即C(n+m,n)。

这个转移自带容斥功能,从另一方面考虑,一条路径到达黑点i,如果经过了若干黑点,那么只在它经过了第一个黑点的时候减去它

那么f[i]减掉在其左上的所有f[j](再乘j走到i的路径数)就可以减去这样的所有路径了。

最后在右下角(h,w)增加一个黑点统计答案。

更多的想法参考:51nod1486 大大走格子 by mrazer

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=,MOD=1e9+;
int f[maxn],fac[],h,w,n;
struct cyc{int x,y;}a[maxn]; bool cmp(cyc a,cyc b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
void gcd(int a,int b,int &x,int &y){
if(!b){x=;y=;}
else{gcd(b,a%b,y,x);y-=x*(a/b);}
}
int inv(int a){
int x,y;
gcd(a,MOD,x,y);
return ((x%MOD)+MOD)%MOD;
}
int calc(int n,int m){return 1ll*fac[n+m]*inv(fac[n])%MOD*inv(fac[m])%MOD;}//1ll*
int main(){
scanf("%d%d%d",&h,&w,&n);
fac[]=;
for(int i=;i<=h+w;i++)fac[i]=1ll*fac[i-]*i%MOD;
for(int i=;i<=n;i++)scanf("%d%d",&a[i].x,&a[i].y);
a[++n]=(cyc){h,w};
sort(a+,a+n+,cmp);
f[]=;
for(int i=;i<=n;i++){
f[i]=calc(a[i].x-,a[i].y-);
for(int j=;j<i;j++)if(a[j].x<=a[i].x&&a[j].y<=a[i].y)f[i]=(f[i]+MOD-1ll*f[j]*calc(a[i].x-a[j].x,a[i].y-a[j].y)%MOD)%MOD;
}
printf("%d",f[n]);
return ;
}

【51NOD】1486 大大走格子的更多相关文章

  1. 51nod 1486 大大走格子(容斥原理)

    1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题   有一个h行w列的棋盘,里面有一些格子是不能走的,现在要 ...

  2. 51Nod 1486 大大走格子 —— 组合数学

    题目链接:https://vjudge.net/problem/51Nod-1486 1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: ...

  3. 51Nod 1486 大大走格子 —— 容斥

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 对于每个点,求出从起点到它,不经过其他障碍点的方案数: 求一 ...

  4. 51nod 1486 大大走格子——dp

    有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数. Input 单组测试数据. 第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 20 ...

  5. 51nod 1486 大大走格子——容斥

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 已知起点到某个障碍点左上角的所有点的不经过障碍的方案数,枚举 ...

  6. 51nod 1486 大大走格子(DP+组合数学)

    枚举不合法点的思想. 把障碍x坐标为第一关键字,y坐标为第二关键字排序.f[i]表示走到第i个障碍的方案数. f[i]=C(x[i]+y[i]-2,x[i]-1)-sigma(f[j]*C(x[i]- ...

  7. 51nod 1486 大大走格子(容斥+dp+组合数)

    传送门 解题思路 暴力容斥复杂度太高,无法接受,考虑用\(dp\).设\(f(i)\)表示从左上角开始不经过前面的阻断点,只经过\(i\)的阻断点.那么可以考虑容斥,用经过\(i\)的总方案数减去前面 ...

  8. 51 Nod 1486 大大走格子

    1486 大大走格子  题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 有一个h行w列的棋盘,里面有一些格子是不 ...

  9. 51nod 1486

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 1486 大大走格子 题目来源: CodeForces 基准时间限 ...

随机推荐

  1. Jmeter和Charles下载文件

    有时候我们jmeter做自动化测试是会遇到文件上传和文件下载的接口,这里我将接结合Charles来Jmeter 文件下载进行讲解 一.用Charles抓包分析文件下载接口 1.1.业务中文件下载链接如 ...

  2. restFul介绍及其使用规范

    什么是REST和RESTful API? REST:(英文:Representational State Transfer,简称REST)表征性状态转移,是一种软件架构风格. RESTful : RE ...

  3. BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...

  4. CubieTruck使用笔记--SD卡中使用lubuntu

    http://docs.cubieboard.org/tutorials/ct1/installation/install_lubuntu_desktop_server_to_sd_card 按照上面 ...

  5. hadoop自定义数据类型

    统计某手机数据库的每个手机号的上行数据包数量和下行数据包数量 数据库类型如下: 数据库内容如下: 下面自定义类型SimLines,类似于平时编写的model import java.io.DataIn ...

  6. jetty-maven-plugin

    <plugins>   <plugin>    <groupId>org.eclipse.jetty</groupId>    <artifact ...

  7. mysql 数据包太小会引发错误信息

    Error querying database.  Cause: com.mysql.cj.jdbc.exceptions.PacketTooBigException: Packet for quer ...

  8. Lua学习笔记:面向对象

    Lua学习笔记:面向对象 https://blog.csdn.net/liutianshx2012/article/details/41921077 Lua 中只存在表(Table)这么唯一一种数据结 ...

  9. bzoj3343: 教主的魔法 分块 标记

    修改:两边暴力重构,中间打标记.复杂度:O(n0.5) 查询:中间二分两边暴力.O(n0.5logn0.5) 总时间复杂度O(n*n0.5logn0.5) 空间复杂度是n级别的 标记不用下传因为标记不 ...

  10. Angular Cookie 读写

    var app = angular.module('Mywind',['ui.router']) app.controller('Myautumn',function($scope,$http,$fi ...