String Problem

Time Limit: 10 Sec  Memory Limit: 64 MB
[Submit][Status][Discuss]

Description

  

Input

  

Output

  

Sample Input

  1
  3
  135
  1 2
  1 2
  1 2
  1 2
  1 2
  1 2
  1 2
  1 2
  1 2
  1 2
  0 0 3
  1 0 0
  4 0 0

Sample Output

  3

HINT

  

Solution

  官方题解:

  首先将点分为3类

  第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得到的价值

  第二类:原串中的n个点每个点拆出一个点,第i个点权值为 –a[s[i]] (表示需要的花费

  第三类:对于10种字符拆出10个点,每个点的权值为  -(b[x]-a[x])

  那么我们可以得到一个关系图 ,对于第一类中的点Pij,如果想要选择Pij,你就必须要选中第二类中的点i和j,对于第二类中的点如果你想选中第i个点,其对应的字符s[i],那么就必须选中第三类中s[i] 对应的点,因为每个种类的点第一次选中时花费是b[s[i]],而第二类中花费都是a[s[i]],一定要补上b[s[i]]-a[s[i]],而且只需要补上一次

  得到上面的关系图后然后就是普通的最大权闭合子图问题,直接求解即可。

  然后我们得到了若干关系,直接建边跑一边网络流即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
using namespace std; const int ONE = ;
const int POI = ;
const int INF = ; int Q,n;
int S,T;
char s[];
int Val[][];
int next[ONE],first[POI],go[ONE],w[ONE],tot;
int Dep[POI],q[ONE],E[POI],tou,wei;
int part1,part2,part3;
int Ans; struct power
{
int a,b;
}a[]; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Add(int u,int v,int z)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; w[tot]=z;
next[++tot]=first[v]; first[v]=tot; go[tot]=u; w[tot]=;
} int Bfs()
{
memset(Dep,,sizeof(Dep));
tou=; wei=;
q[]=S; Dep[S]=;
for(int i=S;i<=T;i++) E[i]=first[i];
while(tou<wei)
{
int u=q[++tou];
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(Dep[v] || !w[e]) continue;
Dep[v]=Dep[u]+;
q[++wei]=v;
}
}
return (Dep[T]>);
} int Dfs(int u,int Limit)
{
if(u==T || !Limit) return Limit;
int from=,f;
for(int &e=E[u];e;e=next[e])
{
int v=go[e];
if(Dep[v]!=Dep[u]+ || !w[e]) continue;
f=Dfs(v,min(Limit,w[e]));
w[e]-=f;
w[((e-)^)+]+=f;
Limit-=f;
from+=f;
if(!Limit) break;
}
return from;
} void Solve()
{
Ans = tot = ;
memset(first,,sizeof(first));
n=get();
scanf("%s",s+);
for(int i=;i<;i++)
a[i].a=get(), a[i].b=get();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
Val[i][j]=get(); part1 = n*(n-)/; part2 = n; part3 = ;
S=; T= part1 + part2 + part3 +;
int num = ;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
num ++; Ans += Val[i][j]+Val[j][i];
Add(S,num, Val[i][j]+Val[j][i]);
Add(num,part1+i, INF);
Add(num,part1+j, INF);
} for(int i=;i<=n;i++)
{
Add(part1+i,T, a[s[i]-''].a);
Add(part1+i,part1+part2+s[i]-''+, INF);
} for(int i=;i<;i++)
Add(part1+part2+i+,T, a[i].b-a[i].a); while(Bfs()) Ans-=Dfs(S,INF); printf("%d\n",Ans);
} int main()
{
Q=get();
while(Q--)
Solve();
}

【HDU5772】String Problem [网络流]的更多相关文章

  1. HDU5772 String problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission ...

  2. HDU5772 String problem 最大权闭合图+巧妙建图

    题意:自己看吧(不是很好说) 分析: 网络流:最大权闭合子图. 思路如下: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得 ...

  3. HDU5772 String problem(最大权闭合子图)

    题目..说了很多东西 官方题解是这么说的: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得分) 第二类:原串中的n个点每个 ...

  4. hdu 5772 String problem 最大权闭合子图

    String problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5772 Description This is a simple pro ...

  5. hdu String Problem(最小表示法入门题)

    hdu 3374 String Problem 最小表示法 view code#include <iostream> #include <cstdio> #include &l ...

  6. HDU 3374 String Problem(KMP+最大/最小表示)

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  7. 【HDU3374】 String Problem (最小最大表示法+KMP)

    String Problem Description Give you a string with length N, you can generate N strings by left shift ...

  8. HDOJ3374 String Problem 【KMP】+【最小表示法】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. HDU 3374 String Problem (KMP+最大最小表示)

    HDU 3374 String Problem (KMP+最大最小表示) String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory ...

随机推荐

  1. android .9图制作

    andorid .9 图,可用于适配各种屏幕.制作的时候,很简单. 在stadio 里面,把鼠标放到图片的边界,点一下.这时候,图片的边缘会有黑块. 然后把鼠标放到黑块上,发现可以拉伸区域了. 这个区 ...

  2. beego orm

    http://beego.me/docs/mvc/model/overview.md go get github.com/astaxie/beego/orm Simple Usage package ...

  3. 自学MVC开发基础

    由于现在面试需求,我必须有点了解MVC开发基础,MVC是一个开发框架或者是一个开发模式,MVC让软件开发的过程大致切割成三个单元,分别是:Model(模型).View(试图).Controller(控 ...

  4. quartz 使用总结

    quartz是一个任务调度框架,具体的用途比如说,我想我的程序在每天的3点干什么事,每隔多长时间做一件什么事.quartz框架就可以完美地解决这些. 1.xml配置方式 首先我是用spring来管理的 ...

  5. asm和file system之间数据文件的转换

    How to move a datafile from a file system to ASMMoving a datafile from the file system can be achive ...

  6. 官方文档 恢复备份指南四 Starting and Interacting with the RMAN Client

    本章讲: Starting and Exiting RMAN Specifying the Location of RMAN Output                                ...

  7. POJ 1149 PIGS(最大流)

    Description Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock an ...

  8. java获得采集网页内容的方法小结

          为了写一个java的采集程序,从网上学习到3种方法可以获取单个网页内容的方法,主要是运用到是java IO流方面的知识,对其不熟悉,因此写个小结. import java.io.Buffe ...

  9. 打包成exe程序

    https://blog.csdn.net/harvic880925/article/details/27675073 当然针对这种exe文件,也可以解压出来得到具体的debug文件夹下的内容.

  10. ASP.NET 概述

    https://msdn.microsoft.com/zh-cn/library/4w3ex9c2(VS.100).aspx ASP.NET 概述 更新:2007 年 11 月 ASP.NET 是一个 ...