【[AH2017/HNOI2017]礼物】
又是我不会做的题了
看看柿子吧
\]
最小化这个柿子
之所以不写下标是因为我们这个\(\{a\},\{b\}\)可以循环同构
那就开始化吧
\]
\]
\]
整理一下
\]
前面的两项是定值,我们可以不用管
中间的这个东西
\]
这是一个关于\(c\)的二次函数,我们可以直接使得
\]
这样就能取得最小值了,但这样\(c\)可能不是整数,所以\(c+1,c-1\)都要试一下
最后面这一项
\]
最大化这个就可以了
这个东西跟循环同构可是有很大关系的
我们发现我们可以将\(\{a\},\{b\}\)中的一个翻转以后被长,这样我们做就得到了一个卷积
之后求出所有的\(n\)种来取一个\(max\)就好了
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define maxn 500005
#define eps 1e-2
#define re register
#define LL long long
#define double long double
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
const double Pi=acos(-1);
struct complex
{
double r,c;
complex (double a=0,double b=0) {r=a,c=b;}
}f[maxn],g[maxn],og,og1,t;
int n,a[maxn],b[maxn],m,len,rev[maxn];
LL Sa,Sb,Sxa,Sxb;
complex operator +(complex a,complex b) {return complex(a.r+b.r,a.c+b.c);}
complex operator -(complex a,complex b) {return complex(a.r-b.r,a.c-b.c);}
complex operator *(complex a,complex b) {return complex(a.r*b.r-a.c*b.c,a.r*b.c+a.c*b.r);}
inline void FFT(complex *f,int v)
{
for(re int i=0;i<=len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1)
{
int ln=i>>1;
og1=complex(cos(Pi/ln),v*sin(Pi/ln));
for(re int l=0;l<len;l+=i)
{
og=complex(1,0);
for(re int x=l;x<l+ln;x++)
{
t=og*f[x+ln];
f[x+ln]=f[x]-t;
f[x]=f[x]+t;
og=og*og1;
}
}
}
}
int main()
{
n=read();m=read();
for(re int i=1;i<=n;i++) a[i]=read(),Sa+=a[i],Sxa+=a[i]*a[i];
for(re int i=1;i<=n;i++) b[i]=read(),Sb+=b[i],Sxb+=b[i]*b[i];
len=1;while(len<n+n+n+3) len<<=1;
for(re int i=1;i<=n;i++) f[i].r=a[i],f[i].c=0;
for(re int i=1;i<=n;i++) g[i].r=b[n-i+1],g[i].c=0,g[i+n]=g[i];
for(re int i=0;i<=len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(len>>1):0);
FFT(f,1),FFT(g,1);
for(re int i=0;i<len;i++) f[i]=f[i]*g[i];
FFT(f,-1);
for(re int i=0;i<len;i++) f[i].r/=len;
double now=0;
for(re int i=n+1;i<=n+n+1;i++) now=max(now,f[i].r);
LL ans=(now+eps);
ans=Sxa+Sxb-2*ans;
double mid=(Sb-Sa)/n;
LL X=mid;
LL last=(LL)n*X*X+X*2*(Sa-Sb)+ans;
X++;last=min(last,(LL)n*X*X+X*2*(Sa-Sb)+ans);
X-=2;last=min(last,(LL)n*X*X+X*2*(Sa-Sb)+ans);
printf("%lld\n",last);
return 0;
}
【[AH2017/HNOI2017]礼物】的更多相关文章
- P3723 [AH2017/HNOI2017]礼物
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1 c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...
- 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- 笔记-[AH2017/HNOI2017]礼物
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...
- [AH2017/HNOI2017]礼物(FFT)
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...
- [AH2017/HNOI2017]礼物
题解: 水题 化简一波式子会发现就是个二次函数再加上一个常数 而只有常数中的-2sigma(xiyi)是随移动而变化的 所以只要o(1)求出二次函数最大值然后搞出sigma(xiyi)就可以了 这个东 ...
- 【文文殿下】[AH2017/HNOI2017]礼物
题解 二项式展开,然后暴力FFT就好了.会发现有一个卷积与c无关,我们找一个最小的项就行了. Tips:记得要倍长其中一个数组,防止FFT出锅 代码如下: #include<bits/stdc+ ...
- BZOJ4827:[AH2017/HNOI2017]礼物——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面 ...
- Luogu 3723 [AH2017/HNOI2017]礼物
BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + ...
随机推荐
- ibaits数组形式批量入库
一.xml层 <!--批量入库--> <insert id="addSecCodeList" parameterClass="java.util.Has ...
- DP Intro - Tree DP
二叉苹果树 题目 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点 ...
- CentOS 7安装zabbix3.0
CentOS 7安装zabbix3.0 一.环境介绍 # systemctl stop firewalld # setenforce 0 # yum -y install unzip vim ne ...
- cmd激活win10
自己动手,KMS激活win10 2016 长期服务版.步骤如下:命令提示符(管理员),依次输入以下3条命令 slmgr /ipk DCPHK-NFMTC-H88MJ-PFHPY-QJ4BJslmgr ...
- C#的split()分割字符串
简单的说: 在C#中 str.Split("===="); //这样是错误的,只能 str.Split('=');//参数只能是char类型的,不能是字符串的 如果非得要以字符串分 ...
- 给string添加新的函数
var str = "abcdefg";String.prototype.constr = function(){ return this.split('').join('-'); ...
- C#中三个关键字params,Ref,out
关于这三个关键字之前可以研究一下原本的一些操作 using System; using System.Collections.Generic; using System.Text; namespace ...
- js获取文件输入框的真实目录
1.问题 页面有一个input file服务器控件,一个div,div是image标签的容器,当点击input file的值改变,我们往div里追加image标签: 但当通过js的onchange事件 ...
- ASP.NET生命周期详解(转)
看到好文章需要分享. 最近一直在学习ASP.NET MVC的生命周期,发现ASP.NET MVC是建立在ASP.NET Framework基础之上的,所以原来对于ASP.NET WebForm中的很多 ...
- 自动化运维与Saltstack
一.自动化运维介绍 1.自动化运维产生背景 传统的IT运维是将数据中心中的网络设备.服务器.数据库.中间件.存储.虚拟化.硬件等资源进行统一监控,当资源出现告警时,运维人员通过工具或者基于经验进行 ...