【[AH2017/HNOI2017]礼物】
又是我不会做的题了
看看柿子吧
\]
最小化这个柿子
之所以不写下标是因为我们这个\(\{a\},\{b\}\)可以循环同构
那就开始化吧
\]
\]
\]
整理一下
\]
前面的两项是定值,我们可以不用管
中间的这个东西
\]
这是一个关于\(c\)的二次函数,我们可以直接使得
\]
这样就能取得最小值了,但这样\(c\)可能不是整数,所以\(c+1,c-1\)都要试一下
最后面这一项
\]
最大化这个就可以了
这个东西跟循环同构可是有很大关系的
我们发现我们可以将\(\{a\},\{b\}\)中的一个翻转以后被长,这样我们做就得到了一个卷积
之后求出所有的\(n\)种来取一个\(max\)就好了
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define maxn 500005
#define eps 1e-2
#define re register
#define LL long long
#define double long double
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
const double Pi=acos(-1);
struct complex
{
double r,c;
complex (double a=0,double b=0) {r=a,c=b;}
}f[maxn],g[maxn],og,og1,t;
int n,a[maxn],b[maxn],m,len,rev[maxn];
LL Sa,Sb,Sxa,Sxb;
complex operator +(complex a,complex b) {return complex(a.r+b.r,a.c+b.c);}
complex operator -(complex a,complex b) {return complex(a.r-b.r,a.c-b.c);}
complex operator *(complex a,complex b) {return complex(a.r*b.r-a.c*b.c,a.r*b.c+a.c*b.r);}
inline void FFT(complex *f,int v)
{
for(re int i=0;i<=len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1)
{
int ln=i>>1;
og1=complex(cos(Pi/ln),v*sin(Pi/ln));
for(re int l=0;l<len;l+=i)
{
og=complex(1,0);
for(re int x=l;x<l+ln;x++)
{
t=og*f[x+ln];
f[x+ln]=f[x]-t;
f[x]=f[x]+t;
og=og*og1;
}
}
}
}
int main()
{
n=read();m=read();
for(re int i=1;i<=n;i++) a[i]=read(),Sa+=a[i],Sxa+=a[i]*a[i];
for(re int i=1;i<=n;i++) b[i]=read(),Sb+=b[i],Sxb+=b[i]*b[i];
len=1;while(len<n+n+n+3) len<<=1;
for(re int i=1;i<=n;i++) f[i].r=a[i],f[i].c=0;
for(re int i=1;i<=n;i++) g[i].r=b[n-i+1],g[i].c=0,g[i+n]=g[i];
for(re int i=0;i<=len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(len>>1):0);
FFT(f,1),FFT(g,1);
for(re int i=0;i<len;i++) f[i]=f[i]*g[i];
FFT(f,-1);
for(re int i=0;i<len;i++) f[i].r/=len;
double now=0;
for(re int i=n+1;i<=n+n+1;i++) now=max(now,f[i].r);
LL ans=(now+eps);
ans=Sxa+Sxb-2*ans;
double mid=(Sb-Sa)/n;
LL X=mid;
LL last=(LL)n*X*X+X*2*(Sa-Sb)+ans;
X++;last=min(last,(LL)n*X*X+X*2*(Sa-Sb)+ans);
X-=2;last=min(last,(LL)n*X*X+X*2*(Sa-Sb)+ans);
printf("%lld\n",last);
return 0;
}
【[AH2017/HNOI2017]礼物】的更多相关文章
- P3723 [AH2017/HNOI2017]礼物
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1 c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...
- 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- 笔记-[AH2017/HNOI2017]礼物
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...
- [AH2017/HNOI2017]礼物(FFT)
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...
- [AH2017/HNOI2017]礼物
题解: 水题 化简一波式子会发现就是个二次函数再加上一个常数 而只有常数中的-2sigma(xiyi)是随移动而变化的 所以只要o(1)求出二次函数最大值然后搞出sigma(xiyi)就可以了 这个东 ...
- 【文文殿下】[AH2017/HNOI2017]礼物
题解 二项式展开,然后暴力FFT就好了.会发现有一个卷积与c无关,我们找一个最小的项就行了. Tips:记得要倍长其中一个数组,防止FFT出锅 代码如下: #include<bits/stdc+ ...
- BZOJ4827:[AH2017/HNOI2017]礼物——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面 ...
- Luogu 3723 [AH2017/HNOI2017]礼物
BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + ...
随机推荐
- 使用 .NET Core CLI 创建 .NET Core 全局工具
https://www.baidu.com/s?ie=utf-8&f=8&rsv_bp=1&rsv_idx=2&ch=&tn=baiduhome_pg& ...
- Android 中判断网络状态
首先在AndroidManifest.xml添加权限 <uses-permission android:name="android.permission.ACCESS_NETWORK_ ...
- async/await 的一些知识 (死锁问题)
博文 Don't Block on Async Code What is the purpose of "return await" in C#? Any difference b ...
- sqlserver 限制用户只能访问指定的视图
项目中有一个需求,要求给其它单位提供数据,我们用到了视图,并要求不能让他们看到数据库中的其它数据,我们为其创建了单独的账号,并只能看到指定视图 一.创建视图 CREATE VIEW [dbo].[v_ ...
- Excle 导入DataSet
using System.Data.OleDb;using System.Data; public void ReadExcelFiless() { //strin ...
- 跨页面传值之QueryString
跨页面传值常用方法 1.QueryString 2.Form-post控件传递 3.Cookies传递 4.Application传递 5.Session传递(灵活强大) 1.query传值 http ...
- [转]JFreeChart简介及下载、配置
JFreeChart简介 JFreeChart是完全基于Java语言的开源项目,因此可以使用在Java开发环境中,包括Java应用程序,或者是Java Web应用都没有任何问题.结合iText项目,可 ...
- Java transient和volatile关键字
关键字Volatile Volatile修饰的成员变量在每次被线程访问时,都强迫从主内存中重读该成员变量的值.而且,当成员变量发生变化时,强迫线程将变化值回写到主内存.这样在任何时刻,两个不同的线程总 ...
- scss-传递内容块到@mixin
样式块被传递给混入用于放置内的样式.在@content指令的位置,样式被包含进mixin. 内容块被传递到块被定义一个混合的范围进行计算. 下面的例子演示了mixin使用内容块的SCSS代码: @mi ...
- 【HTML&CSS】文本的基本处理
其实在写这篇博客的时候已经学了很久,也写了不少代码,特别是很枯燥的看完整个html部分,因为不带有CSS写出来的东西干巴巴的一点也不好看. 直到展开CSS学习才开来补上博客,嗯,这是个好习惯. 这是运 ...