课上习题

【1】线性回归

Answer: D

A 特征缩放不起作用,B for all 不对,C zero error不对

【2】概率

Answer:A

【3】预测图形

Answer:A

5 - x1 ≥ 0时,y = 1。即x1 ≤ 5时,y = 1

【4】凸函数

【5】代价函数

Answer:ABD

任何情况下都是 预测对时 cost为0,反之为正无穷

【6】代价函数

【7】向量化

Answer:A

【8】高级优化算法

Answer:C

【9】多分类


测验

AB

Answer:BE

当有一个feature时是一条直线,当有两个feature时一条曲线,有更多的feature时是一条弯七弯八的曲线 。当feature越来越多时,曲线越来越拟合,即损失函数越来越小

A 逻辑回归没有局部最优

B 当增加feature时,拟合的更好. 正确

C 拟合不好但还是会收敛

D 线性回归

E 直线不会完全拟合这几个数据。找到最佳的θ,但是J(θ)会大于0。 正确

F 和B相反,错误

G 0< hθ(x(i)) <1 不可能大于1。 错误

       

Answer: BCE

AD是线性回归

F少了一个下标 j

Answer:AB

C 线性回归用于分类不好使

D 逻辑回归是凸函数 没有局部最优解的情况。

Answer:D


【1】regularization

Answer:C

【2】

【3】

Answer:A

A :新加的feature会提高 train set的拟合度

B :more features能够更好的 fit 训练集,同时也容易导致overfit,是more likely而不是 prevent. 不正确

C,D:将正则化方法加入模型并不是每次都能取得好的效果,如果取得太大的化就会导致欠拟合. 这样不论对 traing set 还是 examples都不好. 不正确

Answer:B

逻辑回归中,由于λ的加入 参数Θ会变小

Answer:C

Answer: A

Answer:A

【原】Coursera—Andrew Ng机器学习—Week 3 习题—Logistic Regression 逻辑回归的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 6_Logistic Regression 逻辑回归

    Lecture6 Logistic Regression 逻辑回归 6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 ...

  2. 【原】Coursera—Andrew Ng机器学习—Week 1 习题—Linear Regression with One Variable 单变量线性回归

    Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...

  3. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  4. 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 2——逻辑回归

    作业说明 Exercise 2,Week 3,使用Octave实现逻辑回归模型.数据集  ex2data1.txt ,ex2data2.txt 实现 Sigmoid .代价函数计算Computing ...

  5. 【原】Coursera—Andrew Ng机器学习—Week 5 习题—Neural Networks learning

    课上习题 [1]代价函数 [2]代价函数计算 [3] [4]矩阵的向量化 [5]梯度校验 Answer:(1.013 -0.993) / 0.02 = 3.001 [6]梯度校验 Answer:学习的 ...

  6. 【原】Coursera—Andrew Ng机器学习—Week 11 习题—Photo OCR

    [1]机器学习管道 [2]滑动窗口 Answer:C ((200-20)/4)2 = 2025 [3]人工数据 [4]标记数据 Answer:B (10000-1000)*10 /(8*60*60) ...

  7. 【原】Coursera—Andrew Ng机器学习—Week 10 习题—大规模机器学习

    [1]大规模数据 [2]随机梯度下降 [3]小批量梯度下降 [4]随机梯度下降的收敛 Answer:BD A 错误.学习率太小,算法容易很慢 B 正确.学习率小,效果更好 C 错误.应该是确定阈值吧 ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测

    [1]异常检测 [2]高斯分布 [3]高斯分布 [4] 异常检测 [5]特征选择 [6] [7]多变量高斯分布 Answer: ACD B 错误.需要矩阵Σ可逆,则要求m>n  测验1 Answ ...

  9. 【原】Coursera—Andrew Ng机器学习—Week 8 习题—聚类 和 降维

    [1]无监督算法 [2]聚类 [3]代价函数 [4] [5]K的选择 [6]降维 Answer:本来是 n 维,降维之后变成 k 维(k ≤ n) [7] [8] Answer: 斜率-1 [9] A ...

随机推荐

  1. scrapy 碎片

    1.启动命令 2.目录结构 3.文件说明 4.架构图示 5.代码流程 参考资料: http://www.cnblogs.com/yangxt90/articles/9021530.html http: ...

  2. Mongodb 补充

    1 mongodb 概述 启动mongo 1 数据库操作 没有数据的 集合 和 数据库不会显示 db 查看当前的数据库名称: 所有物理上存在的数据库 db.stats() 查看当前的数据库信息: sh ...

  3. [置顶] 【机器学习PAI实践三】雾霾成因分析

    一.背景 如果要人们评选当今最受关注话题的top10榜单,雾霾一定能够入选.如今走在北京街头,随处可见带着厚厚口罩的人在埋头前行,雾霾天气不光影响了人们的出行和娱乐,对于人们的健康也有很大危害.本文通 ...

  4. TCP服务器端口数,最大连接数以及MaxUserPort的关系辨真

    原文连接:http://www.jianshu.com/p/4a58761d758f 关于TCP服务器最大并发连接数有一种误解就是"因为端口号上限为65535,所以TCP服务器理论上的可承载 ...

  5. 使用Reaver破解开启了WPS功能的wifi密码(wpa/wpa2)

    来自wikipeida: Wi-Fi保护设置(简称WPS,全称Wi-Fi Protected Setup)是一个无线网络安全标准,旨在让家庭用户使用无线网络时简化加密步骤.此标准由Wi-Fi联盟(Wi ...

  6. 如何用 php 读取一个很大的 excel 文件。

    这个程序是用php 读取一个很大的excel文件, 先将 excel 文件保存成csv 文件, 然后利用 迭代器 逐行读取 excel 单元格的值, 拿到值以后 做相应处理,并打印结果. <?p ...

  7. phpcms V9二级目录下分页路径不正确问题的彻底解决方法

    在用phpcms V9做二次开发的时候,我们有时候会把一个栏目生成到根目录下,而且这个栏目又有子栏目,我们生成静态的时候分页会出现问题,就是分页的路径的地址错误.有一种解决方法就是,把这个栏目生成动态 ...

  8. VS2010中使用 SpecFlow + Selenium.WebDriver

    安装(VS扩展.程序包) [工具]->[扩展管理器],安装SpecFlow [工具]->[库程序包管理]->[程序包管理器控制台] PM> Install-Package Sp ...

  9. HDU - 6241 :Color a Tree(不错的二分)

    Bob intends to color the nodes of a tree with a pen. The tree consists of NN nodes. These nodes are ...

  10. js实现tab页面不同内容切换显示

    效果      实现的思路如下: controller层同时把两个内容都查处理 前端html用js控制显示 (1)前端的tab代码 (2)tab内容的结构 (3)关键部分 js $(".hd ...