传送门

如果一条边只要考虑 $a$ 的限制,那么显然最小生成树

但是现在有 $a,b$ 两个限制,所以考虑按 $a$ 从小到大枚举边,动态维护 $b$ 的最小生成树

考虑新加入的一条边 $x,y$ ,如果 $x,y$ 不在一颗树上显然直接加入,如果在一棵树上,考虑原本树上 $x$ 到 $y$ 的路径上 $b$ 最大的边

如果比当前边大,那么就把原本那条边从最小生成树上删除,把新的边加进去

答案就在每次加边时更新就好了

这个东西显然直接 $LCT$ 维护,为了维护边权所以要把边权也看成点

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=4e5+,INF=1e9+;
int n,m,ANS=INF;
struct dat{
int x,y,a,b;
inline bool operator < (const dat &tmp) const {
return a<tmp.a;
}
}d[N];
int c[N][],fa[N],t[N],val[N];
//把边化成点后,t维护点权最大的点的编号,val[x]存点x的b值
//边的编号为n+1到n+m
bool rev[N];
inline void pushdown(int x)
{
if(!rev[x]||!x) return;
int &lc=c[x][],&rc=c[x][];
rev[x]=; swap(lc,rc);
if(lc) rev[lc]^=;
if(rc) rev[rc]^=;
}
inline void rever(int x) { rev[x]^=; pushdown(x); }
inline void pushup(int x)
{
t[x]=x;
if(val[ t[c[x][]] ] > val[t[x]]) t[x]=t[c[x][]];
if(val[ t[c[x][]] ] > val[t[x]]) t[x]=t[c[x][]];
}
inline bool notroot(int x) { return (c[fa[x]][]==x)|(c[fa[x]][]==x); }
inline void rotate(int x)
{
int y=fa[x],z=fa[y],d=(c[y][]==x);
if(notroot(y)) c[z][c[z][]==y]=x;
fa[x]=z; fa[y]=x; fa[c[x][d^]]=y;
c[y][d]=c[x][d^]; c[x][d^]=y;
pushup(y); pushup(x);
}
inline void push_rev(int x)
{
if(notroot(x)) push_rev(fa[x]);
else pushdown(x);
pushdown(c[x][]); pushdown(c[x][]);
}
inline void splay(int x)
{
push_rev(x);
while(notroot(x))
{
int y=fa[x],z=fa[y];
if(notroot(y))
{
if(c[y][]==x ^ c[z][]==y) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline void access(int x)
{
for(int y=;x;y=x,x=fa[x])
splay(x),c[x][]=y,pushup(x);
}
inline void makeroot(int x) { access(x); splay(x); rever(x); }
inline int findroot(int x)
{
access(x); splay(x); pushdown(x);
while(c[x][]) pushdown(c[x][]),x=c[x][];
splay(x);
return x;
}
inline int split(int x,int y) { makeroot(x); access(y); splay(y); return t[y]; }//提取一段路径上点权最大的点的编号
inline void link(int x,int y) { makeroot(x); if(findroot(y)!=x) fa[x]=y; }
inline void cut(int x,int y)
{
makeroot(x);
if(findroot(y)!=x||fa[y]!=x||c[y][]) return;
c[x][]=fa[y]=; pushup(x);
}
inline void query(int a)//更新答案
{
if(findroot()==findroot(n))//如果在同一颗树上
{
int w=split(,n);
ANS=min(ANS,a+val[w]);
}
}
inline void insert(int i)//加入边
{
int x=d[i].x,y=d[i].y,a=d[i].a,b=d[i].b; bool flag=;
if(findroot(x)==findroot(y))//如果原本已经是一颗树
{
int w=split(x,y);
if(val[w]>b) cut(w,d[w-n].x),cut(w,d[w-n].y);//如果b更小才cut
else flag=;//否则不连边
}
if(flag) link(n+i,x),link(n+i,y),query(a);//连边并更新ANS
}
int main()
{
n=read(),m=read();
for(int i=;i<=m;i++)
d[i].x=read(),d[i].y=read(),d[i].a=read(),d[i].b=read();
sort(d+,d+m+);
for(int i=;i<=m;i++) val[n+i]=d[i].b;
for(int i=;i<=m;i++) insert(i);
printf("%d",ANS <1e9 ? ANS : -);
return ;
}

P2387 [NOI2014]魔法森林的更多相关文章

  1. P2387 [NOI2014]魔法森林(LCT)

    P2387 [NOI2014]魔法森林 LCT边权维护经典题 咋维护呢?边化为点,边权变点权. 本题中我们把边对关键字A进行排序,动态维护关键字B的最小生成树 加边后出现环咋办? splay维护最大边 ...

  2. 洛谷 P2387 [NOI2014]魔法森林 解题报告

    P2387 [NOI2014]魔法森林 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2 ...

  3. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  4. P2387 [NOI2014]魔法森林 LCT维护最小生成树

    \(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 ...

  5. 洛谷P2387 [NOI2014]魔法森林(LCT)

    魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...

  6. [Luogu P2387] [NOI2014]魔法森林 (LCT维护边权)

    题面 传送门:https://www.luogu.org/problemnew/show/P2387 Solution 这题的思想挺好的. 对于这种最大值最小类的问题,很自然的可以想到二分答案.很不幸 ...

  7. 洛谷P2387 [NOI2014]魔法森林(LCT,Splay)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  8. luogu P2387 [NOI2014]魔法森林

    传送门 这题似乎不好直接做,可以考虑按照\(a_i\)升序排序,然后依次加边更新答案 具体实现方法是用lct维护当前的树,这里需要维护链上最大的\(b_i\).每次加一条边,如果加完以后没有环直接加, ...

  9. 洛谷P2387 [NOI2014]魔法森林(LCT)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

随机推荐

  1. AutoHotKey 使用ADODB读取Excel 报ADODB.Connection 未找到提供程序,可能未提供

    一.系统环境 操作系统:Win7 64位 英文版 Office:     Office 2010 64位/32位 AutoHotKey:AutoHotKey 1.1.26.01 二.问题现象 安装了A ...

  2. Apr编程

    一.简介 http://www.xuebuyuan.com/2195578.html   二.教程 http://dev.ariel-networks.com/apr/

  3. java容器 Map Set List

    容器:在java中,如果有一个类专门用来存放其他类的对象,这个类就叫做容器,或者叫集合,集合就是将若干性质相同或者相近的类的对象组合在一起而形成一个整体. boolean add(Object obj ...

  4. SpringMVC——映射请求参数

    Spring MVC 通过分析处理方法的签名,将 HTTP 请求信息绑定到处理方法的相应人参中. @PathVariable @RequestParam @RequestHeader 等) Sprin ...

  5. hdu 4279 Number(G++提交)

    打表找规律: #include<stdio.h> #include<math.h> #define N 250 bool judge(int i,int j) { ;k< ...

  6. 7.linux安全基线加固

    本文大多截图出自于:http://c.biancheng.net/cpp/shell/ 现在大多数企业都是使用linux作为服务器,不仅是linux是开源系统,更是因为linux比windows更安全 ...

  7. 原生ajax访问服务器所展现的现象

    <!DOCTYPE html><html><head><meta charset="UTF-8"><title>ajax ...

  8. Qt工程文件Pro介绍(转)

    转载请注明:http://blog.163.com/hu_cuit/blog/static/122849143201127104232142/ 我也才开始学习QT的菜鸟.但是前几天有同学叫我给他讲一下 ...

  9. 人脸识别 人工智能(AI)

    .. 如何通过AI实现 用我自己的数据集:能识别几张人脸.能否判断相似度.能否认出.

  10. 那些年我们追过的SQL

    SQL是大学必修课程之一二维表结构,看着就是一种美感. 针对近期感情,聊一聊,在平时容易犯的一个错误,看看你是不是中枪了. 我们还是选用传统的student表(请不要考虑表的结构是否合理)ID     ...