首先看来创建一个mapping 来show show:

curl -XPUT "master:9200/zebra_info?pretty" -H 'Content-Type: application/json' -d'
{
"settings": {
"number_of_shards":5,
"number_of_replicas":1
},
"mappings": {
"zebra_info": {
"properties": {
"name" : {"type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_max_word", "fielddata": true, "fields": {"raw": {"type":"keyword"}}},
"firstly_classification": {"type": "keyword"},
"secondary_classification": {"type": "keyword"},
"type_name": {"type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_max_word", "fielddata": true,"fields": {"raw": {"type":"keyword"}}},
"province": {"type": "keyword"},
"city": {"type": "keyword"},
"citycode": {"type": "keyword"},
"district": {"type": "keyword"},
"adcode": {"type": "keyword"},
"township": {"type": "text"},
"business_circle": {"type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_max_word", "fielddata": true,"fields": {"raw": {"type":"keyword"}}},
"formatted_address": {"type": "text"},
"location": {"type": "geo_point"},
"extensions": {
"type": "nested",
"properties": {
"avg_price": {"type": "double"},
"shops": {"type":"integer"},
"good_comments": {"type":"byte"},
"lvl": {"type":"byte"},
"other_type": {"type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_max_word", "fielddata": true, "fields": {"raw": {"type":"keyword"}}},
"numbers": {"type": "integer"}
}
}
}
}
}
}
'

二、show 看过了,来看一下elasticsearch 支持的数据类型。


1,text:
当一个字段是要被全文搜索的,比如Email内容、产品描述,应该使用text类型。设置text类型以后,字段内容会被分析,在生成倒排索引以前,字符串会被分析器分成一个一个词项。text类型的字段不用于排序,很少用于聚合(termsAggregation除外)。
如果要聚合,请设置成keyword 参照上面的索引,设置一个fielddata。 聚合或者排序的时候用name.raw 进行排序。
"name" : {"type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_max_word", "fielddata": true, "fields": {"raw": {"type":"keyword"}}} 2,keyword:
keyword类型适用于索引结构化的字段,比如email地址、主机名、状态码和标签。如果字段需要进行过滤(比如查找已发布博客中status属性为published的文章)、排序、聚合。keyword类型的字段只能通过精确值搜索到。 3,数据类型 范围
long -2^63至2^63-1
integer -2^31至2^31-1
short -32,768至32768
byte -128至127
double 64位双精度IEEE 754浮点类型
float 32位单精度IEEE 754浮点类型
half_float 16位半精度IEEE 754浮点类型
scaled_float 缩放类型的的浮点数(比如价格只需要精确到分,price为57.34的字段缩放因子为100,存起来就是5734)相当于可以定义精确度
用法如下:
PUT my_index
{
"mappings": {
"my_type": {
"properties": {
"number_of_bytes": {
"type": "integer"
},
"time_in_seconds": {
"type": "float"
},
"price": {
"type": "scaled_float",
"scaling_factor": 100
}
}
}
}
} 4,object 类型 或者说是嵌套类型。定义参见文章标题给出的索引
PUT my_index/my_type/1
{
"region": "US",
"manager": {
"age": 30,
"name": {
"first": "John",
"last": "Smith"
}
}
} 5, 日期类型
支持的格式如下:
日期格式的字符串:e.g. “2015-01-01” or “2015/01/01 12:10:30”.
long类型的毫秒数( milliseconds-since-the-epoch)
integer的秒数(seconds-since-the-epoch)
举栗子如下:
PUT my_index/my_type/1
{ "date": "2015-01-01" }
PUT my_index/my_type/2
{ "date": "2015-01-01T12:10:30Z" }
PUT my_index/my_type/3
{ "date": 1420070400001 } 6,Array类型
ELasticsearch没有专用的数组类型,默认情况下任何字段都可以包含一个或者多个值,但是一个数组中的值要是同一种类型。例如:
字符数组: [ “one”, “two” ]
整型数组:[1,3]
嵌套数组:[1,[2,3]],等价于[1,2,3]
对象数组:[ { “name”: “Mary”, “age”: 12 }, { “name”: “John”, “age”: 10 }]
注意事项:
动态添加数据时,数组的第一个值的类型决定整个数组的类型
混合数组类型是不支持的,比如:[1,”abc”]
数组可以包含null值,空数组[ ]会被当做missing field对待。 7,geo 类型,可以是点,线,或者面(区域)
地理位置信息类型用于存储地理位置信息的经纬度。 8,其他不常用的类型。
range 类型
integer_range -2^31至2^31-1
float_range 32-bit IEEE 754
long_range -2^63至2^63-1
double_range 64-bit IEEE 754
date_range 64位整数,毫秒计时 ip 类型,binary 类型,token_count 类型, nested类型类型(特殊的object 类型)

elasticsearch 5.x 系列之三 mapping 映射的时候的各个字段的设置的更多相关文章

  1. Elasticsearch学习系列之mapping映射

    什么是映射 为了能够把日期字段处理成日期,把数字字段处理成数字,把字符串字段处理成全文本(Full-text)或精确(Exact-value)的字符串值,Elasticsearch需要知道每个字段里面 ...

  2. 剖析Elasticsearch集群系列之三:近实时搜索、深层分页问题和搜索相关性权衡之道

    转载:http://www.infoq.com/cn/articles/anatomy-of-an-elasticsearch-cluster-part03 近实时搜索 虽然Elasticsearch ...

  3. spice在桌面虚拟化中的应用系列之三(USB映射实现,SSL加密,密码认证,多客户端支持)

    本系列其它文章 spice在桌面虚拟化中的应用系列之一(spice简介,性能优化等) spice在桌面虚拟化中的应用系列之二(Linux平台spice客户端的编译安装,支持USB映射) 1.spice ...

  4. elasticsearch的mapping映射

    Mapping简述 Elasticsearch是一个schema-less的系统,但并不代表no shema,而是会尽量根据JSON源数据的基础类型猜测你想要的字段类型映射.Elasticsearch ...

  5. elasticsearch中的mapping映射配置与查询典型案例

    elasticsearch中的mapping映射配置与查询典型案例 elasticsearch中的mapping映射配置示例比如要搭建个中文新闻信息的搜索引擎,新闻有"标题".&q ...

  6. 第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理

    第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理 1.映射(mapping)介绍 映射:创建索引的时候,可以预先定义字 ...

  7. elasticsearch 5.6.4自动创建索引与mapping映射关系 +Java语言

    由于业务上的需求 ,最近在研究elasticsearch的相关知识 ,在网上查略了大部分资料 ,基本上对elasticsearch的数据增删改都没有太大问题 ,这里就不做总结了  .但是,在网上始终没 ...

  8. Elasticsearch(八)【NEST高级客户端--Mapping映射】

    要使用NEST与Elasticsearch进行交互,我们需要能够将我们的解决方案中的POCO类型映射到存储在Elasticsearch中的反向索引中的JSON文档和字段.本节介绍NEST中可用的所有不 ...

  9. 四十三 Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理

    1.映射(mapping)介绍 映射:创建索引的时候,可以预先定义字段的类型以及相关属性elasticsearch会根据json源数据的基础类型猜测你想要的字段映射,将输入的数据转换成可搜索的索引项, ...

随机推荐

  1. matlab练习程序(Bresenham画线)

    Bresenham画线算图形学中最基础的知识了,可惜我并没有选修过图形学,所有还是有必要熟悉一下. 上一篇用到的画线函数应该算是数值微分法,也是我最常用的一种方法,不过这种方法似乎并不是很好. 这里的 ...

  2. spark1.统计句子中特定内容

    val logFile = "./README.md" // Should be some file on your server. val conf = new SparkCon ...

  3. stopPropagation()阻止事件向父容器传递

    topPropagation()函数用于阻止当前事件在DOM树上冒泡. 根据DOM事件流机制,在元素上触发的大多数事件都会冒泡传递到该元素的所有祖辈元素上,如果这些祖辈元素上也绑定了相应的事件处理函数 ...

  4. 用AutoHotkey调整Windows音量

    我用了[右Alt]+方向键来调整音量:Alt+上下键,音量调整幅度为5,如果再增加个右Ctrl,音量调整幅度为1. Alt+左键为静音,Alt+右键为最大音量. >!Up:: ;音量+ < ...

  5. 查看pip install安装的python包的位置

    例如,我在一个名为tf_14的vertualenv环境中(no-site-package)安装了一个contextlib2包 (tf_14) novak@novak-ZBook15G2:~/Carnd ...

  6. 怎样下载YouTube播放列表视频

    YouTube上面的视频种类丰富多彩,要是你想利用上面的资源来学习的话,足够你钻研很长时间了.如果你想在YouTube上面学习一门教程,比如Python,通常这些内容一个视频肯定装不下,会分为好多个视 ...

  7. JVM文章学习

     JVM 文章 Java虚拟机学习 - 体系结构 内存模型http://blog.csdn.net/java2000_wl/article/details/8009362 Java虚拟机学习 - 对象 ...

  8. Android进阶笔记10:ListView篇之ListView显示多种类型的条目(item)

    ListView可以显示多种类型的条目布局,这里写显示两种布局的情况,其他类似. 1. 这是MainActivity,MainActivity的布局就是一个ListView,太简单了这里就不写了,直接 ...

  9. Jupyter notebook远程访问linux服务器

    [转]https://blog.csdn.net/akon_wang_hkbu/article/details/78973366

  10. Mysql索引学习笔记

    1.btree索引与hash索引 下列范围查询适用于 btree索引和hash索引: SELECT * FROM t1 WHERE key_col = 1 OR key_col IN (15,18,2 ...