(POJ - 1050)To the Max 最大连续子矩阵和
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines).
These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
Sample Output
15
解题报告:这道题真的是感人,状态转移方程干到我怀疑人生,最后终于搞明白了,下面附上理解图,希望能便于大家理解此题的DP方程
#include <bits/stdc++.h>
using namespace std;
int map[110][110],dp[110][110];
int main()
{
//freopen("input.txt","r",stdin);
int N,a;
while(~scanf("%d",&N) && N)
{
memset(map,0,sizeof(map));
memset(dp,0,sizeof(dp));
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
{
scanf("%d",&a);
map[i][j] = map[i][j-1] + a;
//map[i][j]表示第i行前j列的和
}
int Max = -0xffffff0;
for(int j = 1; j <= N; j++)
for(int i = 1; i <= j; i++)
{
dp[i][j] = 0;
for(int k = 1; k <= N; k++)
{
dp[i][j]= max(dp[i][j]+map[k][j]-map[k][i-1],map[k][j]-map[k][i-1]);
if(dp[i][j] > Max)
Max = dp[i][j];
}
}
printf("%d\n",Max);
}
return 0;
}
(POJ - 1050)To the Max 最大连续子矩阵和的更多相关文章
- POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)
传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS Memory Limit: 10000K Total Submi ...
- poj 1050 To the Max(最大子矩阵之和)
http://poj.org/problem?id=1050 我们已经知道求最大子段和的dp算法 参考here 也可参考编程之美有关最大子矩阵和部分. 然后将这个扩大到二维就是这道题.顺便说一下,有 ...
- [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
- poj 1050 To the Max(最大子矩阵之和,基础DP题)
To the Max Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 38573Accepted: 20350 Descriptio ...
- POJ 1050 To the Max (最大子矩阵和)
题目链接 题意:给定N*N的矩阵,求该矩阵中和最大的子矩阵的和. 题解:把二维转化成一维,算下就好了. #include <cstdio> #include <cstring> ...
- hdu 1081 & poj 1050 To The Max(最大和的子矩阵)
转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...
- poj 1050 To the Max 最大子矩阵和 经典dp
To the Max Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- poj - 1050 - To the Max(dp)
题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- js 操作table
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default4.aspx.cs ...
- Java生产者消费者问题
1. package interview.thread; import java.util.LinkedList; import java.util.Queue; import org.apache. ...
- 12.Alias(别名)
通过使用 SQL,可以为列名称和表名称指定别名(Alias). SQL Alias 表的 SQL Alias 语法 SELECT column_name(s) FROM table_name AS a ...
- jqgrid控件列分组
<%-- builed by manage.aspx.cmt [ver:2014.48.11] at 2014/10/11 16:48:33 --%> <%@ Page Langua ...
- Javascript脚本 :Function 对象的定义和使用
javascript Function 对象的定义 创建函数的语法:var myFunction=new Function(arg1,arg2,...agrN,body);agrN 为函数的参数,b ...
- WinForm中自定义搜索框(水印、清空按钮、加载中图标)
public partial class CustomSearchBar : TextBox { private readonly Label lblwaterText = new Label(); ...
- 第一篇 Python的数据类型
Python的标准数据类型有五种: (1)字符串 (2)数字(包括整数,浮点数,布尔,复数) (3)列表(list) (4)元组(tuple) (5)字典(dict) 注:使用type函数可以查看对象 ...
- Java代码生成16位纯数字的订单号
//生成16位唯一性的订单号 public static void getUUID(){ //随机生成一位整数 int random = (int) (Math.random()*9+1); Stri ...
- dos窗口运行java文件需要jar依赖
执行java文件时候,有些里面依赖了java之外的jar,这是识别不到的,运行java命令的时候,带上jar路径: java -cp .;jar路径(加上jar名字) java文件名 例:java ...
- javascript前端导出csv表格
使用场景 后台统计经常要展示各种各样的表格数据,几乎每个表格展示都会伴随着数据的导出. 之前的解决方案都是通过发起一个相同查询参数(querystring)的导出请求(action=export),由 ...