Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 

As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 

9 2 -6 2 

-4 1 -4 1 

-1 8 0 -2 

is in the lower left corner: 

9 2 

-4 1 

-1 8

and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines).
These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

Sample Output

15

解题报告:这道题真的是感人,状态转移方程干到我怀疑人生,最后终于搞明白了,下面附上理解图,希望能便于大家理解此题的DP方程

#include <bits/stdc++.h>
using namespace std; int map[110][110],dp[110][110]; int main()
{
//freopen("input.txt","r",stdin);
int N,a;
while(~scanf("%d",&N) && N)
{
memset(map,0,sizeof(map));
memset(dp,0,sizeof(dp)); for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
{
scanf("%d",&a);
map[i][j] = map[i][j-1] + a;
//map[i][j]表示第i行前j列的和
} int Max = -0xffffff0; for(int j = 1; j <= N; j++)
for(int i = 1; i <= j; i++)
{
dp[i][j] = 0; for(int k = 1; k <= N; k++)
{
dp[i][j]= max(dp[i][j]+map[k][j]-map[k][i-1],map[k][j]-map[k][i-1]);
if(dp[i][j] > Max) Max = dp[i][j];
}
} printf("%d\n",Max);
}
return 0;
}

(POJ - 1050)To the Max 最大连续子矩阵和的更多相关文章

  1. POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)

    传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  2. poj 1050 To the Max(最大子矩阵之和)

    http://poj.org/problem?id=1050 我们已经知道求最大子段和的dp算法 参考here  也可参考编程之美有关最大子矩阵和部分. 然后将这个扩大到二维就是这道题.顺便说一下,有 ...

  3. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  4. poj 1050 To the Max(最大子矩阵之和,基础DP题)

    To the Max Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 38573Accepted: 20350 Descriptio ...

  5. POJ 1050 To the Max (最大子矩阵和)

    题目链接 题意:给定N*N的矩阵,求该矩阵中和最大的子矩阵的和. 题解:把二维转化成一维,算下就好了. #include <cstdio> #include <cstring> ...

  6. hdu 1081 &amp; poj 1050 To The Max(最大和的子矩阵)

    转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...

  7. poj 1050 To the Max 最大子矩阵和 经典dp

    To the Max   Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  8. poj - 1050 - To the Max(dp)

    题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...

  9. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

随机推荐

  1. OpenCV 2.4.13 installed in Ubuntu 14 and CMakeLists Demo

    1. 配置编译器环境 [compiler] sudo apt-get install build-essential 2. 安装OpenCV的依赖包 [required] -dev pkg-confi ...

  2. 为什么要有http响应码

    其实还是比较容易理解的.这就和你去小卖部买东西一样,老板,我想要一袋大米,那老板先得回答有还是没有,还是说我们这没有,去其它地方买去吧,得先给个说法,这个说法就是http相应码,有了http响应码之后 ...

  3. Linux 下安装tomcat 服务器

    1. 下载tomcat wget http://apache.fayea.com/tomcat/tomcat-7/v7.0.68/bin/apache-tomcat-7.0.68.tar.gz tar ...

  4. Spring jdbcTemplate RowMapper绑定任意对象

    RowMapper可以将数据中的每一行封装成用户定义的类,在数据库查询中,如果返回的类型是用户自定义的类型则需要包装,如果是Java自定义的类型,如:String则不需要,Spring最新的类Simp ...

  5. RecyclerView添加两种布局

    简介: 本篇博客主要介绍如何在RecyclerView中添加两种布局 思路:主要重写Recyclerview.Adapter中的一些方法 1.public int getItemViewType(in ...

  6. delphi 指针 认识

    delphi 指针分为类型指针和无类型指针: 类型指针分为PChar.PInteger.PString等. 无类型指针Pointer. PPChar/PP...为指针的指针 @和Addr一样,为获取变 ...

  7. PLSA的EM推导

    本文作为em算法在图模型中的一个应用,推导plsa的em算法. 1 em算法 em算法是解决一类带有隐变量模型的参数估计问题. 1.1 模型的定义 输入样本为,对应的隐变量为.待估计的模型参数为,目标 ...

  8. 表单使用clone方法后, 原有select无法生效

    textarea和select的值clone的时候会丢掉,在clone的时候将val再重新赋值一下,如果知道这个了就加单了   测试发现,textarea和select的jquery的clone方法有 ...

  9. mysql 新建数据库与表

  10. ExposedObject的使用

    ExposedObject可以将一个对象快速封装未一个dynamic using System; namespace ConsoleApp2 { class Program { static void ...