题意:给定\(k,b,n,m\),求\(\sum_{i=0}^{n-1}f(g(i))\)

其中\(f(i)=f(i-1)+f(i-2),f(1)=1,f(0)=0\),\(g(i)=k*i+b\)

令矩阵\(A\)为

\[\begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

那么

\[\begin{bmatrix}
f(n+1) \\
f(n) \\
\end{bmatrix}=A^n \begin{bmatrix}
1 \\
0 \\
\end{bmatrix}
\]

我们所求的$$S = f(g(1))+f(g(2))+...+f(g(n-1)) $$

\[S=f(b)+f(k+b)+f(k*2+b)+...+f(k*(n-1)+b)
\]

\[S=A^b\begin{bmatrix}1 \\0 \\\end{bmatrix}+A^{k+b}\begin{bmatrix}1 \\0 \\\end{bmatrix}+...+A^{k(n-1)+b}\begin{bmatrix}1 \\0 \\\end{bmatrix}
\]

\[S=A^b[E+(A^k)^1+(A^k)^2...+(A^k)^{n-1}]\begin{bmatrix}1 \\0 \\\end{bmatrix}
\]

中间的前缀和求法可参考我上一篇文章(p讲解都没有):http://www.cnblogs.com/caturra/p/8452828.html

#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define println(a) printf("%lld\n",(ll)a)
using namespace std;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
ll k,b,n,m;
struct Matrix{
ll mt[5][5],r,c;
void init(int rr,int cc,bool flag=0){
r=rr;c=cc;
memset(mt,0,sizeof mt);
if(flag) rep(i,1,r) mt[i][i]=1;
}
Matrix operator * (Matrix rhs){
Matrix ans; ans.init(r,rhs.c);
rep(i,1,r){
rep(j,1,rhs.c){
int t=max(r,rhs.c);
rep(k,1,t){
ans.mt[i][j]+=(mt[i][k]*rhs.mt[k][j])%m;
ans.mt[i][j]=(ans.mt[i][j])%m;
}
}
}
return ans;
}
};
Matrix fpw(Matrix A,ll n){
Matrix ans;ans.init(A.r,A.c,1);
while(n){
if(n&1) ans=ans*A;
n>>=1;
A=A*A;
}
return ans;
}
int bas[3][3]={
{0,0,0},
{0,1,1},
{0,1,0}
};
int bas2[3]={0,1,0};
int main(){
Matrix A; A.init(2,2);
rep(i,1,2)rep(j,1,2) A.mt[i][j]=bas[i][j];
Matrix C; C.init(2,1);
rep(i,1,2) C.mt[i][1]=bas2[i];
while(cin>>k>>b>>n>>m){
Matrix Ak=fpw(A,k);
Matrix Ab=fpw(A,b);
Matrix UNIT; UNIT.init(2,2,1);
Matrix B; B.init(4,4);
rep(i,1,2)rep(j,1,2) B.mt[i][j]=Ak.mt[i][j];
rep(i,1,2)rep(j,3,4) B.mt[i][j]=UNIT.mt[i][j-2];
rep(i,3,4)rep(j,3,4) B.mt[i][j]=UNIT.mt[i-2][j-2];
Matrix res=fpw(B,n);
B.init(2,2);
rep(i,1,2) rep(j,1,2) B.mt[i][j]=res.mt[i][j+2];
res=Ab*B*C;
println(res.mt[2][1]);
}
return 0;
}

HDU - 1588 矩阵前缀和的更多相关文章

  1. hdu 1588(矩阵好题+递归求解等比数列)

    Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU 1588 矩阵快速幂 嵌套矩阵

    这个题目搞了我差不多一个下午,之前自己推出一个公式,即 f[n+k]=k*f[n]+f[n-1]结果发现根本不能用,无法降低复杂度. 后来又个博客的做法相当叼,就按他的做法来了 即 最终求得是 S(n ...

  3. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  4. UVALive 7139 Rotation(矩阵前缀和)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  5. hdu 4291 矩阵幂 循环节

    http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109  ...

  6. 杭电第四场 hdu6336 Problem E. Matrix from Arrays 打表找规律 矩阵前缀和(模板)

    Problem E. Matrix from Arrays Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 ...

  7. hdu 1588(Fibonacci矩阵求和)

    题目的大意就是求等差数列对应的Fibonacci数值的和,容易知道Fibonacci对应的矩阵为[1,1,1,0],因为题目中f[0]=0,f[1]=1,所以推出最后结果f[n]=(A^n-1).a, ...

  8. HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)

    Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...

  9. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

随机推荐

  1. solr第一天 基础增删改查操作

    全文检索技术   Lucene&Solr               Part2 1 课程计划 1.索引库的维护 a) 添加文档 b) 删除文档 c) 修改文档 2.Lucene的查询 a)  ...

  2. 70个HR面试题

    请你自我介绍一下你自己,      回答提示:一般人回答这个问题过于平常,只说姓名.年龄.爱好.工作经验,这些在简历上都有,其实,企业最希望知道的是求职者能否胜任工作,包括:最强的技能.最深入研究的知 ...

  3. Docker学习之路(二)DockerFile详解

    Dockerfile是一个镜像的表示,可以通过Dockerfile来描述构建镜像的步骤,并自动构建一个容器 所有的 Dockerfile 命令格式都是: INSTRUCTION arguments 虽 ...

  4. Apache htpasswd命令

    一.简介 htpasswd是apache的一个工具,该工具主要用于建立和更新存储用户名.密码的文本文件,主要用于对基于http用户的认证. 二.语法 Usage: htpasswd [-cimBdps ...

  5. HTML总结之:HTML5的DOCTYPE 与 meta 属性介绍

    HTML5头部常用介绍: [DOCTYPE html] 声明文档类型为HTML5文件.   [meta标签] <meta> 元素可提供有关页面的元信息(meta-information), ...

  6. 深数据 - Deep Data

    暂无中文方面的信息,E文的也非常少,原文连接: A lot of great pieces have been written about the relatively recent surge in ...

  7. 快速入手Web幻灯片制作

    在线幻灯片 使用markdown可以快速的写出优美的文档,接下来我介绍一些简单的语法,快速的用浏览器制作幻灯片. 最基本使用格式 <!DOCTYPE html> <html> ...

  8. ORCHARD学习教程-介绍

    ORCHARD 是什么? Orchard 是由微软公司创建,基于 ASP.NET MVC 技术的免费开源内容管理系统: 可用于建设博客.新闻门户.企业门户.行业网站门户等各种网站 简单易用的后台界面 ...

  9. CMake使用技巧

    前面有提到使用CMake.很多朋友提到也用过一下,没感觉它有什么好用,不知道怎么用之类. 我必要来说明一下. CMake的语法比较差,不是很优美,不是它不能用一个更好的语法,而是有一个关键优势:简单. ...

  10. 自己总结的,输出到前端JSON的几种方法

    第一种:利用MODEL拼成要输出JSON的对象.再用JSON.NET转成JSON输出到前端(这种常用,就不举例了.) 第二种:利用table拼成JSON数据格式,再用JSON.NET转成JSON输出到 ...