先放题面

Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,’0’表示红色,’1’表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3

111111

000000

001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。

100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

先简单说说自己最开始的wa解法:对所有木板直接dp,只能从该木板的长度内或其他木板的末尾转移过来。dp方程定义为:dp[k][i][j]表示刷k次、在第i个木板的第j格结束。结果后来对拍后才发现这个有后效性,挂了。

正解:

对每一个木板先进行一次dp,求出第i个木板刷k次最多能刷对多少格。然后再拿每个木板作为一个组,进行分组背包(其实将木板作为一个泛化物品进行背包问题会理解的更形象?)

然后有一个小小的优化:

在dp时,我们需要枚举之前的状态来选择最优解。而这一重枚举可能会造成超时(没试过),所以希望把它优化掉。用不着单调队列优化,将需枚举的量和在一起,每次取一个最值保存下来

就像这样:

f[k][i][j]=max(cnt[0][i][j]+tmp0,cnt[1][i][j]+tmp1);
tmp0=max(tmp0,f[k-1][i][j]-cnt[0][i][j]);
tmp1=max(tmp1,f[k-1][i][j]-cnt[1][i][j]);

完整代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; char c[55][55];
int n,m,T,cnt[2][55][55],f[3000][55][55],dp[3000][55]; int main(){
scanf("%d%d%d",&n,&m,&T);
for(int k=1;k<=n;k++){
scanf("%s",c[k]+1);
for(int i=1;i<=m;i++){
cnt[0][k][i]=cnt[0][k][i-1]+(c[k][i]=='0');
cnt[1][k][i]=cnt[1][k][i-1]+(c[k][i]=='1');
}
}
int tmp0,tmp1;
for(int k=1;k<=m;k++){
for(int i=1;i<=n;i++){
tmp0=tmp1=0;
for(int j=1;j<=m;j++){
f[k][i][j]=max(cnt[0][i][j]+tmp0,cnt[1][i][j]+tmp1);
tmp0=max(tmp0,f[k-1][i][j]-cnt[0][i][j]);
tmp1=max(tmp1,f[k-1][i][j]-cnt[1][i][j]);
}
}
}
for(int k=1;k<=T;k++){
for(int i=1;i<=n;i++){
dp[k][i]=max(dp[k][i],dp[k][i-1]);
for(int j=1;j<=min(k,m);j++)
dp[k][i]=max(dp[k][i],dp[k-j][i-1]+f[j][i][m]);
}
}
printf("%d\n",dp[T][n]);
return 0;
}

【bzoj1296】【[SCOI2009]粉刷匠】多次背包dp及小小的优化的更多相关文章

  1. BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...

  2. [bzoj1296][SCOI2009]粉刷匠(泛化背包)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=1296 分析: 首先预处理出每一行的g[0..T]表示这一行刷0..T次,最多得到的正确格子数 ...

  3. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  4. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  5. 【Dp】Bzoj1296 [SCOI2009] 粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  6. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  7. 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)

    传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...

  8. BZOJ1296 [SCOI2009]粉刷匠 【dp】

    题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...

  9. bzoj1296 [SCOI2009]粉刷匠——背包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1296 对于不同木板之间,最终统计答案时做一个分组背包即可: 而要进行分组背包,就需要知道每个 ...

随机推荐

  1. C语言一些常用的功能

    1.测试运行时间: #include<stdio.h> #include<stdlib.h> #include<time.h> int main() { clock ...

  2. bzoj1499: [NOI2005]瑰丽华尔兹&&codevs1748 单调队列优化dp

    这道题 网上题解还是很多很好的 强烈推荐黄学长 码风真的好看 神犇传送门 学习学习 算是道单调队列优化dp的裸题吧 #include<cstdio> #include<cstring ...

  3. 【BZOJ】1708: [Usaco2007 Oct]Money奶牛的硬币

    [算法]DP [题解] 如果每个排列算一种,则令f[i]表示凑成面值为i的方案数,容易推出f[i]+=f[i-a[j]]. 现在是每个组合才算一种,令f[i][j]第二维表示只使用前j种面值,f[i] ...

  4. swift方法 的写法,ui上拖拽的控件到controller里面的方法

    直接点xcode右上角三个按键中间一下,左右拆分为storyboard和controller, 点击button,按ctrl,然后拖拽到controller里面即可生成对应的点击事件在controll ...

  5. 关押罪犯洛谷P1525

    题目+评测传送门 思路 其实这一题有2种不同的思路,但是由于我实在是太蒟蒻了,只会其中一种,另一种看了半天都不知道它在讲什么/(ㄒoㄒ)/~~ 首先,我们要学习一下二分图及其判断方法博客,然后这个题目 ...

  6. (七)计算G711语音的打包长度和RTP里timestamp的增长量

    如何计算G711语音等的打包长度和RTP里timestamp的增长量 一般对于不同的语音有不同的打包周期,而不同的打包周期又对应着不同的timestamp in RTP 那么是如何计算的呢,我们通过G ...

  7. C# 获取存在DataTable1不存在DataTable2的数据的快速方法

    通过合并和获得改变两个方法获得差异的部分: dataTable1.AcceptChanges();dataTable1.Merge(dataTable2);DataTable changesTable ...

  8. nodejs的包管理器npm和cnpm

    http://www.ydcss.com/archives/18 3.npm介绍 3.1.说明:npm(node package manager)nodejs的包管理器,用于node插件管理(包括安装 ...

  9. 【C++】继承时构造函数和析构函数

    1. 顺序 先调用基类的构造函数,再调用派生类构造函数.析构顺序相反. 2. 构造函数 派生类 不用初始化列表调用基类构造函数->调用基类的默认构造函数 派生类 使用初始化列表调用基类带参构造函 ...

  10. Django之模型ORM

    ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述 ...