本文结合R语言,展示了异常检测的案例,主要内容如下:

(1)单变量的异常检测

(2)使用LOF(local outlier factor,局部异常因子)进行异常检测

(3)通过聚类进行异常检测

(4)对时间序列进行异常检测

一、单变量异常检测

本部分展示了一个单变量异常检测的例子,并且演示了如何将这种方法应用在多元数据上。在该例中,单变量异常检测通过boxplot.stats()函数实现,并且返回产生箱线图的统计量。在返回的结果中,有一个部分是out,它结出了异常值的列表。更明确点,它列出了位于极值之外的胡须。参数coef可以控制胡须延伸到箱线图外的远近。在R中,运行?boxplot.stats可获取更详细的信息。

如图呈现了一个箱线图,其中有四个圈是异常值。

如上的单变量异常检测可以用来发现多元数据中的异常值,通过简单搭配的方式。在下例中,我们首先产生一个数据框df,它有两列x和y。之后,异常值分别从x和y检测出来。然后,我们获取两列都是异常值的数据作为异常数据。

在下图中,异常值用红色标记为"+"

类似的,我们也可以将x或y为异常值的数据标记为异常值。下图,异常值用'x'标记为蓝色。

当有三个以上的变量时,最终的异常值需要考虑单变量异常检测结果的多数表决。当选择最佳方式在真实应用中进行搭配时,需要涉及领域知识。

二、使用LOF(local outlier factor,局部异常因子)进行异常检测

LOF(局部异常因子)是用于识别基于密度的局部异常值的算法。使用LOF,一个点的局部密度会与它的邻居进行比较。如果前者明显低于后者(有一个大于1 的LOF值),该点位于一个稀疏区域,对于它的邻居而言,这就表明,该点是一个异常值。LOF的缺点就是它只对数值数据有效。

lofactor()函数使用LOF算法计算局部异常因子,并且它在DMwR和dprep包中是可用的。下面将介绍一个使用LOF进行异常检测的例子,k是用于计算局部异常因子的邻居数量。下图呈现了一个异常值得分的密度图。

接着,我们结合前两个主成份的双标图呈现异常值。

在如上代码中,prcomp()执行了一个主成分分析,并且biplot()使用前两个主成分画出了这些数据。在上图中,x和y轴分别代表第一和第二个主成份,箭头表示了变量,5个异常值用它们的行号标记出来了。

我们也可以如下使用pairsPlot显示异常值,这里的异常值用"+"标记为红色。

Rlof包,对LOF算法的并行实现。它的用法与lofactor()相似,但是lof()有两个附加的特性,即支持k的多元值和距离度量的几种选择。如下是lof()的一个例子。在计算异常值得分后,异常值可以通过选择前几个检测出来。注意,目前包Rlof的版本在MacOS X和Linux环境下工作,但并不在windows环境下工作,因为它要依赖multicore包用于并行计算。

三、通过聚类进行异常检测

另外一种异常检测的方法是聚类。通过把数据聚成类,将那些不属于任务一类的数据作为异常值。比如,使用基于密度的聚类DBSCAN,如果对象在稠密区域紧密相连,它们将被分组到一类。因此,那些不会被分到任何一类的对象就是异常值。

我们也可以使用k-means算法来检测异常。使用k-means算法,数据被分成k组,通过把它们分配到最近的聚类中心。然后,我们能够计算每个对象到聚类中心的距离(或相似性),并且选择最大的距离作为异常值。

如下是一个基于k-means算法在iris数据上实现在异常检测。

在上图中,聚类中心被标记为星号,异常值标记为'+'

四、对时间序列进行异常检测

本部分讲述一个对时间序列数据进行异常检测的例子。在本例中,时间序列数据首次使用stl()进行稳健回归分解,然后识别异常值。STL的介绍,请访问 http://cs.wellesley.edu/~cs315/Papers/stl%20statistical%20model.pdf.

在上图中,异常值用红色标记为'x'

五、讨论

LOF算法擅长检测局部异常值,但是它只对数值数据有效。Rlof包依赖multicore包,在Windows环境下失效。对于分类数据的一个快速稳定的异常检测的策略是AVF(Attribute Value Frequency)算法。

一些用于异常检测的R包包括:

extremevalues包:单变量异常检测

mvoutlier包:基于稳定方法的多元变量异常检测

outliers包:对异常值进行测验

【R笔记】使用R语言进行异常检测的更多相关文章

  1. 【R笔记】R语言函数总结

    R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  3. 【R笔记】R语言中的字符串处理函数

    内容概览 尽管R是一门以数值向量和矩阵为核心的统计语言,但字符串同样极为重要.从医疗研究数据里的出生日期到文本挖掘的应用,字符串数据在R程序中使用的频率非常高.R语言提供了很多字符串操作函数,本文仅简 ...

  4. 【R笔记】R语言进阶之4:数据整形(reshape)

    R语言进阶之4:数据整形(reshape) 2013-05-31 10:15 xxx 网易博客 字号:T | T 从不同途径得到的数据的组织方式是多种多样的,很多数据都要经过整理才能进行有效的分析,数 ...

  5. 【R笔记】R语言利器之ddply

    ddply()函数位于plyr包,用于对data.frame进行分组统计,与tapply有些类似 准备数据 # 使用stringsAsFactors=F来防止data.frame把向量转为factor ...

  6. 【R笔记】R的内存管理和垃圾清理

    笔记: 1.R输入命令时速度不要太快,终究是个统计软件,不是编程! 2.memory.limit()查看当前操作系统分配内存给R的最大限度(单位是M?) 3.要经常 rm(object) 或者 rm( ...

  7. 机器学习:异常检测算法Seasonal Hybrid ESD及R语言实现

    Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项.假定这一项符合正态分布,然后就可以用Ge ...

  8. R语言学习笔记1——R语言中的基本对象

    R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心 ...

  9. R语言入门学习笔记 - 对R软件的认识

    一.R软件 1.安装R:自行百度☺ 2.R控制台(R Console)和R程序脚本: 打开R软件,就会直接打开控制台,控制台可以显示程序运行的结果.错误提示等信息,也可以直接输入想要执行的操作并立即返 ...

随机推荐

  1. 学习python类

    类:Python 类提供了面向对象编程的所有基本特征: 允许多继承的类继承机制, 派生类可以重写它父类的任何方法, 一个方法可以调用父类中重名的方法. 对象可以包含任意数量和类型的数据成员. 作为模块 ...

  2. DIV的变高与变宽

    代码: <!DOCTYPE HTML><html><head> <meta charset="utf-8"> <title&g ...

  3. (转)HTTP请求中URL地址的编码和解码

    HTTP请求中,类似   http%3A%2F%2Fwww.baidu.com%2Fcache%2Fuser%2Fhtml%2Fv3Jump.html  的地址 如何解码成    http://www ...

  4. (转)C/S 与 B/S 区别

    感谢:http://www.cnblogs.com/xiaoshuai/archive/2010/05/25/1743741.html C/S结构,即Client/Server(客户机/服务器)结构, ...

  5. codevs 3305 水果姐逛水果街Ⅱ&&codevs3006

    题目描述 Description 水果姐第二天心情也很不错,又来逛水果街. 突然,cgh又出现了.cgh施展了魔法,水果街变成了树结构(店与店之间只有一条唯一的路径). 同样还是n家水果店,编号为1~ ...

  6. Educational Codeforces Round 40 A B C D E G

    A. Diagonal Walking 题意 将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少. 思路 贪心 Code #include &l ...

  7. algorithm ch6 heapsort

    堆排序利用的是堆这种数据结构来对进行排序,(二叉)堆可以被视为一棵完全的二叉树,树的每个节点与数组中存放该节点的值得那个元素对应.这里使用最大堆进行排序算法设计,最大堆就是parent(i) > ...

  8. UVA 10471 Gift Exchanging

    题意:就5种盒子,给出每个盒子个数,盒子总数,每个人选择这个盒子的概率.求这个人选择哪个盒子取得第一个朋友的概率最大,最大多少 dp[N][sta]表示当前第N个人面临状态sta(选择盒子的状态可以用 ...

  9. 【bzoj3924&&luogu3345】幻想乡战略游戏

    这题可以用线段树做,不过正解恐怕是动态点分治?(点分树) 简单介绍下动态点分治的概念:在点分治的过程中,一般我们面对的问题都是静态的.如果涉及到修改这类的操作,我们就希望找到我们是如何处理到当前的修改 ...

  10. js数组高效去重

    http://blog.csdn.net/chengxuyuan20100425/article/details/8497277 这个方法的思路是先把数组排序,然后比较相邻的两个值. 排序的时候用的J ...