递归实现N皇后问题
其实是看到一位名为“活在二次元的伪触”的博主昨天还是前天写了篇这个题材的笔记,觉得有点意思,于是想自己来写写。
其实我发现上述那位同学写N皇后问题写得还不错,文末也会给出这位同学用通过递归的方法实现N皇后问题的博文地址。一起学习和提高。
还是先来看看最基础的8皇后问题:
在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
扩展到N皇后问题是一样的。
一看,似乎要用到二维数组。其实不需要。一维数组就能判断,比如Arr[i],就可以表示一个元素位于第i行第Arr[i]列——应用广泛的小技巧。而且在这里我们不用考虑去存储整个矩阵,如果Arr[i]存在,那么我们在打印的时候,打印到皇后位置的时候输出1,非皇后位输出0即可。
这种思路的实现方式网上大把,包括前面提到的那位同学,所以也就不要纠结有没有改善有没有提高之类的了,权当一次练习即可。
直接上代码好了,觉得递归方法没什么好说的,空间想想能力好一点儿很容易理解。明天有空再写写非递归实现吧。
/*
* NQueen.cpp
*
* Created on: 2013年12月23日
* Author: nerohwang
*/
//形参rowCurrent表示当前所到的行数
#include<iostream>
#include<fstream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
bool Check(int rowCurrent,int *&NQueen); //判断函数
void Print(ofstream &os,int n,int *&NQueen); //打印函数
void Solve(int rowCurrent,int *&NQueen,int n,int &count, ofstream &os); //N皇后问题处理函数,index一般初值为0 //判断函数,凡是横竖有冲突,或是斜线上有冲突,返回FALSE
bool Check(int rowCurrent,int *&NQueen)
{
int i = ;
while(i < rowCurrent)
{
if(NQueen[i] == NQueen[rowCurrent] || (abs(NQueen[i]-NQueen[rowCurrent]) == abs(i-rowCurrent)) )
{
return false;
}
i++;
}
return true;
} //将所有可能出现的结果输出文本文档
void Print(ofstream &os,int n,int *&NQueen)
{
os<<"一次调用\n";
for (int i = ;i < n;i++) {
for(int j = ; j < n; j++)
{
os<<(NQueen[i]==j?:);
os<<setw();
}
os<<"\n";
}
os<<"\n";
}
//核心函数。递归解决N皇后问题,触底则进行打印
void Solve(int rowCurrent,int *&NQueen,int n,int &count, ofstream &os)
{
if(rowCurrent == n) //当前行数触底,即完成了一个矩阵,将它输出
{
Print(os,n,NQueen);
count++;
}
for(int i = ; i < n; i++)
{
NQueen[rowCurrent] = i; //row行i列试一试
if(Check(rowCurrent,NQueen))
{
Solve(rowCurrent+,NQueen,n,count,os); //移向下一行
}
}
} int main()
{
int n; //问题规模
int count = ; //解的计数
cout<<"请输入问题的规模N"<<endl;
cin>>n;
if(n<)
{
cerr<<"问题规模必须大于4"<<endl;
return ;
}
int *NQueen = new int[n];
ofstream os;
os.open("result.txt");
Solve(,NQueen,n,count,os);
cout<<"问题的解有"<<count<<"种方法"<<endl;
os.close();
return ;
}
顺便给出前面提到的那位同学的随笔地址:
http://www.cnblogs.com/FZQL/p/3485616.html
递归实现N皇后问题的更多相关文章
- C#中八皇后问题的递归解法——N皇后
百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...
- java递归求八皇后问题解法
八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处 ...
- 递归与N皇后问题
递归的基本概念 一个函数调用其自身,就是递归 递归的作用 1) 替代多重循环 2) 解决本来就是用递归形式定义的问题 3) 将问题分解为规模更小的子问题进行求解 一行只能有一个皇后,这个根据游戏规则中 ...
- 用递归求n皇后问题
此问题是指在n*n的国际象棋棋盘上 ,放置n个皇后,使得这n个皇后均不在,同一行,同一列,同一对角线上,求出合法的方案的数目. 本题可以简单转化为就是求n的全排列中的数放在棋盘上使得这几组数,符合均不 ...
- 栈(stack)、递归(八皇后问题)、排序算法分类,时间和空间复杂度简介
一.栈的介绍: 1)栈的英文为(stack)2)栈是一个先入后出(FILO-First In Last Out)的有序列表.3)栈(stack)是限制线性表中元素的插入和删除只能在线性表的同一端进行的 ...
- 算法篇【递归2 -- N皇后问题】
问题:输入整数N,要求在N*N的棋盘上,互相不能攻击,不在同一行同一列上,切不在对角线上,输出全部方案. 输入: 4 输出: 2 4 1 3 3 1 4 2 思路: 假设在前k-1个摆好的 ...
- 递归-N皇后问题
// // #include <stdio.h> /*可以用回溯,但是我已经不太熟悉回溯了!!!!!!!!呜呜呜 * */ #include <iostream> #inclu ...
- 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化
上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...
- N皇后问题(递归)
//八皇后递归解法 //#include<iostream> //using namespace std; #include<stdio.h> ] = {-,-,-,-,-,- ...
随机推荐
- Spring MVC生成RSS源
下面的示例演示如何使用Spring Web MVC框架生成RSS源. 首先使用Eclipse IDE,并按照以下步骤使用Spring Web Framework开发基于动态表单的Web应用程序: 创建 ...
- jQuery 尺寸 方法
jQuery 提供多个处理尺寸的重要方法: width() height() innerWidth() innerHeight() outerWidth() outerHeight()
- python 爬虫4 cookies
Cookie,指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密) 比如说有些网站需要登录后才能访问某个页面,在登录之前,你想抓取某个页面内容是不允许的.那么 ...
- CI的意思
Continuous integration (CI) is the practice, in software engineering, of merging all developer worki ...
- day2 python基础 while 循环补充
一.上节内容回顾 二.pycharm安装. 安装好以后激活方法:直接打开pycharm,选License server激活,输入:http://idea.imsxm.com 三.补充知识:如果字符串本 ...
- 加号选择器(ul>li + li)
<head> <meta charset="UTF-8"> <title>+ selector</title> <style& ...
- 【转】Gacutil.exe(全局程序集缓存工具)
全局程序集缓存工具使您可以查看和操作全局程序集缓存和下载缓存的内容. 安装 Visual Studio 和 Windows SDK 时会自动安装此工具. 要运行工具,我们建议您使用 Visual St ...
- Qt里的原子操作QAtomicInteger
所谓原子操作,即一系列复杂的操作能一气呵成,中间不被其他的操作打断.这在多线程程序中尤其常见,但要实现这种功能,既要考虑程序的良好设计,又要关心特定平台的体系结构和相关编译器对原子特性的支持程度.所以 ...
- 前端基础 & 初识CSS
CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素.l 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 每个CS ...
- 转:9个offer,12家公司,35场面试 从微软到谷歌,应届计算机毕业生的2012求职之路 !!!
1,简介 毕业答辩搞定,总算可以闲一段时间,把这段求职经历写出来,也作为之前三个半月的求职的回顾. 首先说说我拿到的offer情况: 微软,3面->终面,搞定 百度,3面->终面,口头of ...