原创文章~转载请注明出处哦。其他部分内容参见以下链接~

GraphSAGE 代码解析(一) - unsupervised_train.py

GraphSAGE 代码解析(二) - layers.py

GraphSAGE 代码解析(四) - models.py

1. class MeanAggregator(Layer):

该类主要用于实现

1. __init__()

__init_() 用于获取并初始化成员变量 dropout, bias(False), act(ReLu), concat(False), input_dim, output_dim, name(Variable scopr)

用glorot()方法初始化节点v的权值矩阵 vars['self_weights'] 和邻居节点均值u的权值矩阵 vars['neigh_weights']

用零向量初始化vars['bias']。(见inits.py: zeros(shape))

若logging为True,则调用 layers.py 中 class Layer()的成员函数_log_vars(), 生成vars中各个变量的直方图。

glorot()

其中,glorot() 在inits.py中定义,用于权值初始化。(from .inits import glorot)

均匀分布初始化方法,又称Xavier均匀初始化,参数从 [-limit, limit] 的均匀分布产生,其中limit为 sqrt(6 / (fan_in + fan_out))。fan_in为权值张量的输入单元数,fan_out是权重张量的输出单元数。该函数返回 [fan_in, fan_out]大小的Variable。

 def glorot(shape, name=None):
"""Glorot & Bengio (AISTATS 2010) init."""
init_range = np.sqrt(6.0/(shape[0]+shape[1]))
initial = tf.random_uniform(shape, minval=-init_range, maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name)

2. _call(inputs)

class MeanAggregator(Layer) 中的 _call(inputs) 函数是对父类class Layer(object)方法_call(inputs)的重写。

用于实现最上方的迭代更新式子。

在layer.py 中定义的 class Layer(object)中,执行特殊函数def __call__(inputs) 时有: outputs = self._call(inputs)调用_call(inputs) 方法,也即在这里调用子类MeanAggregator(Layer)中的_call(inputs)方法。

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

With probability keep_prob, outputs the input element scaled up by 1 / keep_prob, otherwise outputs 0. The scaling is so that the expected sum is unchanged.

注意:输出的非0元素是原来的 “1/keep_prob” 倍,以保证总和不变。

tf.add_n(inputs, name=None)

Adds all input tensors element-wise.

Args:
inputs: A list of Tensor or IndexedSlices objects, each with same shape and type.
name: A name for the operation (optional).
Returns:
A Tensor of same shape and type as the elements of inputs. Raises:
ValueError: If inputs don't all have same shape and dtype or the shape cannot be inferred.

output = tf.concat([from_self, from_neighs], axis=1)

这里注意在concat后其维数变为之前的2倍。

3. class MeanAggregator(Layer) 代码

 class MeanAggregator(Layer):
"""
Aggregates via mean followed by matmul and non-linearity.
""" def __init__(self, input_dim, output_dim, neigh_input_dim=None,
dropout=0., bias=False, act=tf.nn.relu,
name=None, concat=False, **kwargs):
super(MeanAggregator, self).__init__(**kwargs) self.dropout = dropout
self.bias = bias
self.act = act
self.concat = concat if neigh_input_dim is None:
neigh_input_dim = input_dim if name is not None:
name = '/' + name
else:
name = '' with tf.variable_scope(self.name + name + '_vars'):
self.vars['neigh_weights'] = glorot([neigh_input_dim, output_dim],
name='neigh_weights')
self.vars['self_weights'] = glorot([input_dim, output_dim],
name='self_weights')
if self.bias:
self.vars['bias'] = zeros([self.output_dim], name='bias') if self.logging:
self._log_vars() self.input_dim = input_dim
self.output_dim = output_dim def _call(self, inputs):
self_vecs, neigh_vecs = inputs neigh_vecs = tf.nn.dropout(neigh_vecs, 1-self.dropout)
self_vecs = tf.nn.dropout(self_vecs, 1-self.dropout)
neigh_means = tf.reduce_mean(neigh_vecs, axis=1) # [nodes] x [out_dim]
from_neighs = tf.matmul(neigh_means, self.vars['neigh_weights']) from_self = tf.matmul(self_vecs, self.vars["self_weights"]) if not self.concat:
output = tf.add_n([from_self, from_neighs])
else:
output = tf.concat([from_self, from_neighs], axis=1) # bias
if self.bias:
output += self.vars['bias'] return self.act(output)

2. class GCNAggregator(Layer)

这里__init__()与MeanAggregator基本相同,在_call()的实现中略有不同。

 def _call(self, inputs):
self_vecs, neigh_vecs = inputs neigh_vecs = tf.nn.dropout(neigh_vecs, 1-self.dropout)
self_vecs = tf.nn.dropout(self_vecs, 1-self.dropout)
means = tf.reduce_mean(tf.concat([neigh_vecs,
tf.expand_dims(self_vecs, axis=1)], axis=1), axis=1) # [nodes] x [out_dim]
output = tf.matmul(means, self.vars['weights']) # bias
if self.bias:
output += self.vars['bias'] return self.act(output)

其中对means求解时,

1. 先将self_vecs行列转换(tf.expand_dims(self_vecs, axis=1)),

2. 之后self_vecs的行数与neigh_vecs行数相同时,将二者concat, 即相当于在原先的neigh_vecs矩阵后面新增一列self_vecs的转置

3. 最后将得到的矩阵每行求均值,即得means.

之后means与权值矩阵vars['weights']求内积,并加上vars['bias'], 最终将该值带入激活函数(ReLu)。

下面举个例子简单说明(例子中省略了点乘W的操作):

 import tensorflow as tf

 neigh_vecs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
self_vecs = [2, 3, 4] means = tf.reduce_mean(tf.concat([neigh_vecs,
tf.expand_dims(self_vecs, axis=1)], axis=1), axis=1) print(tf.shape(self_vecs)) print(tf.expand_dims(self_vecs, axis=0))
# Tensor("ExpandDims_1:0", shape=(1, 3), dtype=int32) print(tf.expand_dims(self_vecs, axis=1))
# Tensor("ExpandDims_2:0", shape=(3, 1), dtype=int32) sess = tf.Session()
print(sess.run(tf.expand_dims(self_vecs, axis=1)))
# [[2]
# [3]
# [4]] print(sess.run(tf.concat([neigh_vecs,
tf.expand_dims(self_vecs, axis=1)], axis=1)))
# [[1 2 3 2]
# [4 5 6 3]
# [7 8 9 4]] print(means)
# Tensor("Mean:0", shape=(3,), dtype=int32) print(sess.run(tf.reduce_mean(tf.concat([neigh_vecs,
tf.expand_dims(self_vecs, axis=1)], axis=1), axis=1)))
# [2 4 7] # [[1 2 3 2] = 8 // 4 = 2
# [4 5 6 3] = 18 // 4 = 4
# [7 8 9 4]] = 28 // 4 = 7 bias = [1]
output = means + bias
print(sess.run(output))
# [3 5 8]
# [2 + 1, 4 + 1, 7 + 1] = [3, 5, 8]

GraphSAGE 代码解析(三) - aggregators.py的更多相关文章

  1. GraphSAGE 代码解析(四) - models.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...

  2. GraphSAGE 代码解析(二) - layers.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(三) - aggregator ...

  3. GraphSAGE 代码解析(一) - unsupervised_train.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(二) - layers.py GraphSAGE 代码解析(三) - aggregators.py GraphSA ...

  4. GraphSAGE 代码解析 - minibatch.py

    class EdgeMinibatchIterator """ This minibatch iterator iterates over batches of samp ...

  5. RobHess的SIFT代码解析步骤三

    平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码 2.书:王永明 ...

  6. Celery 源码解析三: Task 对象的实现

    Task 的实现在 Celery 中你会发现有两处,一处位于 celery/app/task.py,这是第一个:第二个位于 celery/task/base.py 中,这是第二个.他们之间是有关系的, ...

  7. 用 TensorFlow 实现 k-means 聚类代码解析

    k-means 是聚类中比较简单的一种.用这个例子说一下感受一下 TensorFlow 的强大功能和语法. 一. TensorFlow 的安装 按照官网上的步骤一步一步来即可,我使用的是 virtua ...

  8. OpenStack之虚机热迁移代码解析

    OpenStack之虚机热迁移代码解析 话说虚机迁移分为冷迁移以及热迁移,所谓热迁移用度娘的话说即是:热迁移(Live Migration,又叫动态迁移.实时迁移),即虚机保存/恢复(Save/Res ...

  9. [nRF51822] 12、基础实验代码解析大全 · 实验19 - PWM

    一.PWM概述: PWM(Pulse Width Modulation):脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形. PWM 的几个基本概念: 1) 占空比:占空比是指 ...

随机推荐

  1. 初学bind

    其实项目中还没有用到. 但自己还是想逐步了解一些高级的JS语法,不是为了炫技,也不像找前端的工作. 主要目的是:1.学习设计思想,提升解决问题的能力2.让自己的脑子动起来,别太笨. 简单的几句话总结一 ...

  2. Android学习笔记_46_fragment的简单应用

    Fragments 诞生初衷 http://www.cnblogs.com/TerryBlog/archive/2012/02/17/2355753.html 自从Android 3.0中引入frag ...

  3. Angularjs实例2

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  4. caffe+opencv3.3.1

    跟着时代走 换成opencv3.3.1,目前来看所有的都是最新版了. anaconda最新,opencv最新,我看了protobuf也很新. 下次再买台服务器时,我想直接用python来弄,因为这次安 ...

  5. div鼠标悬停,子元素上移,鼠标移出,子元素下移动画。

    HTML: <div class="edt_title" > <div id="edt_title"> <p class=&quo ...

  6. SpringBoot非官方教程 | 第十五篇:Springboot整合RabbitMQ

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springboot/2017/07/11/springboot15-rabbitmq/ 本文出自方志朋的博客 这 ...

  7. springboot2.04+mybatis-plus+swagger2+CodeGenerator

    @author zhangyh SpringBoot技术栈搭建个人博客[项目准备]  RESTful API就是一套协议来规范多种形式的前端和同一个后台的交互方式 原型设计 事实上,我是直接先去找的原 ...

  8. MySQL表结构(含数据类型、字段备注注释)导出成Excel

    方法一: 1.用的是Navicat Premium,可以换成任意图形化客户端 SELECT COLUMN_NAME 列名, COLUMN_TYPE 数据类型, DATA_TYPE 字段类型, CHAR ...

  9. c# 本地完整缓存组件

    用了一段时间java,java实现服务端程序很简单,有很多公共开源的组件或者软件.但是c#的很少. 现在准备自己写点东西,学习下新的东西,总结下c#的内容以及我们经常用的内容,抽离成类,组件,模型.方 ...

  10. 蓝图(Blueprint)详解

    Blueprint 模块化 随着flask程序越来越复杂,我们需要对程序进行模块化的处理,针对一个简单的flask程序进行模块化处理 举例来说: 我们有一个博客程序,前台界面需要的路由为:首页,列表, ...