上文已经介绍了基于词典的中文分词,现在让我们来看一下基于统计的中文分词。

统计分词:

统计分词的主要思想是把每个词看做是由字组成的,如果相连的字在不同文本中出现的次数越多,就证明这段相连的字很有可能就是一个词。

统计分词一般做如下两步操作:

1.建立统计语言模型(n-gram)

2.对句子进行单词划分,然后对划分结果做概率计算,获取概率最大的分词方式。这里就用到了统计学习算法,如隐马尔科夫模型(HMM),条件随机场(CRF)等

语言模型:

语言模型在信息检索,机器翻译,语音识别中承担着重要的任务。这种模型结构简单,直接,但同时也因为数据缺乏而必须采取平滑算法。这里主要介绍n元语言模型(n-gram)。

假设S表示长度为i,由(W1,W2,....,Wi)字序列组成的句子,则代表S的概率为:

P(S) = P(W1,W2,...,Wi) = P(W1)*P(W2|W1)*P(W3|W2,W1)....P(Wi|W1,W2,...,Wi-1)

即每个字的出现都与他之前出现过的字有关,最后整个句子S的概率为这些字概率的乘积。但是这个计算量很大,所以在这里我们可以利用马尔科夫假设,即当前词只与最多前n-1个有限的词相关:

当n=1时,即出现在第i位上的词Wi独立于历史时,一元文法被记作uni-gram,一元语言模型可以记作:

uni-gram

当n=2时,即出现在第i位上的词wi仅与它前面的一个历史词wi-1有关,二元文法模型被称为一阶马尔可夫链(Markov chain),记作bi-gram,二元语言模型可以记作:

bi-gram

当n=3时,即出现在第i位置上的词wi仅与它前面的两个历史词wi-2和wi-1有关,三元文法模型被称为二阶马尔可夫链,记作tri-gram,三元语言模型可以记作:

tri-gram

在实际应用中,一般使用频率计数的比例来计算n元条件概率。

基于HMM的分词:

隐含马尔可夫模型(HMM)是将分词作为字在句子中的序列标注任务来实现的(关于HMM稍后会在另一篇文章中详细介绍)。其基本思路是:每个字在构造一个特定词语时都占据着一个特定的位置即词位,一般采用四结构词位:B(词首),M(词中),E(词尾)和S(单独成词)。比如:

'中文/分词/是/文本处理/不可或缺/的/一步/!',

标注后的形式:

'中/B 文/E 分/B 词/E 是/S 文/B 本/M 处/M 理/E 不/B 可/M 或/M 缺/E 的/S 一/B 步/E !/S'。

其中,词位序列代表着HMM中不可见的隐藏状态序列,而训练集中的文本则为可见的观测序列。这样就变成了已知观测序列,求未知的隐藏序列的HMM问题。

本篇文章中,我们使用有标记的监督学习去训练HMM的参数,无监督学习的Baum-Welch方法(EM)会后续更新到本文中。

实现主要分为三步:

1.使用已经分好词的训练集去训练HMM模型,计算频数得到HMM的三要素(初始状态概率,状态转移概率和发射概率)。

训练HMM参数

2.使用Viterbi算法以及训练好的三个概率矩阵,将待分词的句子转换为'BMES'类型的状态序列。

Viterbi求最大概率序列

3.根据已经求出的状态序列,划分句子进行分词。

分词

最后测试结果:

训练参数

读取模型并分词

本文实现的HMM分词模型比较简单,分词效果依赖于训练集文本语料库的规模,所以要想得到更好的性能,需要花费人力维护语料库。

待更新。

详细代码可参考GitHub: 代码连接

参考书籍:

《Python自然语言处理实战-核心技术与算法》涂铭,刘祥,刘树春  著

《统计自然语言处理》 宗成庆  著

NLP系列-中文分词(基于统计)的更多相关文章

  1. NLP系列-中文分词(基于词典)

    中文分词概述 词是最小的能够独立活动的有意义的语言成分,一般分词是自然语言处理的第一项核心技术.英文中每个句子都将词用空格或标点符号分隔开来,而在中文中很难对词的边界进行界定,难以将词划分出来.在汉语 ...

  2. Hadoop的改进实验(中文分词词频统计及英文词频统计)(4/4)

    声明: 1)本文由我bitpeach原创撰写,转载时请注明出处,侵权必究. 2)本小实验工作环境为Windows系统下的百度云(联网),和Ubuntu系统的hadoop1-2-1(自己提前配好).如不 ...

  3. 【NLP】中文分词:原理及分词算法

    一.中文分词 词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,因此,中文词语分析是中文信息处理的基础与关键. ...

  4. 【nlp】中文分词基础原则及正向最大匹配法、逆向最大匹配法、双向最大匹配法的分析

    分词算法设计中的几个基本原则: 1.颗粒度越大越好:用于进行语义分析的文本分词,要求分词结果的颗粒度越大,即单词的字数越多,所能表示的含义越确切,如:“公安局长”可以分为“公安 局长”.“公安局 长” ...

  5. 中文分词实践(基于R语言)

    背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事 ...

  6. NLP舞动之中文分词浅析(一)

    一.简介        针对现有中文分词在垂直领域应用时,存在准确率不高的问题,本文对其进行了简要分析,对中文分词面临的分词歧义及未登录词等难点进行了介绍,最后对当前中文分词实现的算法原理(基于词表. ...

  7. 开源中文分词工具探析(五):Stanford CoreNLP

    CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer ...

  8. 开源中文分词工具探析(六):Stanford CoreNLP

    CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer ...

  9. PHP+mysql数据库开发搜索功能:中英文分词+全文检索(MySQL全文检索+中文分词(SCWS))

    PHP+mysql数据库开发类似百度的搜索功能:中英文分词+全文检索 中文分词: a)   robbe PHP中文分词扩展: http://www.boyunjian.com/v/softd/robb ...

随机推荐

  1. Android学习笔记_31_通过后台代码生成View对象以及动态加载XML布局文件到LinearLayout

    一.布局文件part.xml: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android&qu ...

  2. 【题解】洛谷P1731 [NOI1999] 生日蛋糕(搜索+剪枝)

    洛谷P1731:https://www.luogu.org/problemnew/show/P1731 思路 三重剪枝 当前表面积+下一层表面积如果超过最优值就退出 当前体积+下一层体积如果超过总体积 ...

  3. 【题解】洛谷P2341 [HAOI2006]受欢迎的牛(强连通分量)

    洛谷P2341:https://www.luogu.org/problemnew/show/P2341 前言 这题看错题目 足足花了将近5小时提交了15次 在一位dalao的提醒下才AC了 记得要看清 ...

  4. git快捷命令缩写

    # Query/use custom command for `git`. zstyle -s ":vcs_info:git:*:-all-" "command" ...

  5. c语言描述的静态查找表

    顺序表的查找: 直接循环依次和目标比较就行 有序表的查找(二分查找): int search(SS *T,Type key){ int mid; ; int high=T.length; while( ...

  6. 优雅的QSignleton (四) 通过属性器实现MonoSingleton

      大家都出去过周六了,而我却在家写代码T.T...   接下来介绍通过属性器实现MonoSingleton. 代码如下: MonoSingletonProperty.cs namespace QFr ...

  7. win10永久激活方法-备份

    百度经验 > 游戏/数码 > 电脑 > 笔记本电脑 Win10专业版永久激活方法 听语音 3780404人看了这个视频 返回 暂停 重播 播放 x       1秒后即将播放下一条视 ...

  8. 插入排序_C语言_数组

    插入排序_C语言_数组 #include <stdio.h> void insertSort(int *); int main(int argc, const char * argv[]) ...

  9. jquery表单属性筛选元素

    $(":button") 选择所有按钮元素类型为按钮的元素. 等于$('input[type="button"]') $(":checkbox&quo ...

  10. ionic 安装步骤

    安装ionic和cordova 1,需要首先安装好nodejs,然后通过npm来安装 npm install -g cordova ionic  注意:可能遇到的错误:Error: Cannot fi ...