type()

动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

比方说我们要定义一个Hello的class,就写一个hello.py模块:

class Hello(object):
def hello(self, name='world'):
print('Hello, %s.' % name)

当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello的class对象,测试如下:

>>> from hello import Hello
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class 'hello.Hello'>

type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello

我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。

type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义:

>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class '__main__.Hello'>

要创建一个class对象,type()函数依次传入3个参数:

  1. class的名称;

  2. 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;

  3. class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。

通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。

正常情况下,我们都用class Xxx...来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。

metaclass

除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。

metaclass,直译为元类,简单的解释就是:

当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。

连接起来就是:先定义metaclass,就可以创建类,最后创建实例。

所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。

metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。

我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法:

定义ListMetaclass,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:

# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
def __new__(cls, name, bases, attrs):
attrs['add'] = lambda self, value: self.append(value)
return type.__new__(cls, name, bases, attrs)

有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass

class MyList(list, metaclass=ListMetaclass):
pass

当我们传入关键字参数metaclass时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.__new__()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。

__new__()方法接收到的参数依次是:

  1. 当前准备创建的类的对象;

  2. 类的名字;

  3. 类继承的父类集合;

  4. 类的方法集合。

测试一下MyList是否可以调用add()方法:

>>> L = MyList()
>>> L.add(1)
>> L
[1]

而普通的list没有add()方法:

>>> L2 = list()
>>> L2.add(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'

动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。

但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。

ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。

要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。

让我们来尝试编写一个ORM框架。

编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:

class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password') # 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()

其中,父类Model和属性类型StringFieldIntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。

现在,我们就按上面的接口来实现该ORM。

首先来定义Field类,它负责保存数据库表的字段名和字段类型:

class Field(object):

    def __init__(self, name, column_type):
self.name = name
self.column_type = column_type def __str__(self):
return '<%s:%s>' % (self.__class__.__name__, self.name)

Field的基础上,进一步定义各种类型的Field,比如StringFieldIntegerField等等:

class StringField(Field):

    def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)') class IntegerField(Field): def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')

下一步,就是编写最复杂的ModelMetaclass了:

class ModelMetaclass(type):

    def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
print('Found model: %s' % name)
mappings = dict()
for k, v in attrs.items():
if isinstance(v, Field):
print('Found mapping: %s ==> %s' % (k, v))
mappings[k] = v
for k in mappings.keys():
attrs.pop(k)
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
attrs['__table__'] = name # 假设表名和类名一致
return type.__new__(cls, name, bases, attrs)

以及基类Model

class Model(dict, metaclass=ModelMetaclass):

    def __init__(self, **kw):
super(Model, self).__init__(**kw) def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key) def __setattr__(self, key, value):
self[key] = value def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))

当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找metaclass,如果没有找到,就继续在父类Model中查找metaclass,找到了,就使用Model中定义的metaclassModelMetaclass来创建User类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。

ModelMetaclass中,一共做了几件事情:

  1. 排除掉对Model类的修改;

  2. 在当前类(比如User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);

  3. 把表名保存到__table__中,这里简化为表名默认为类名。

Model类中,就可以定义各种操作数据库的方法,比如save()delete()find()update等等。

我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。

编写代码试试:

u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
u.save()

  

输出如下:

Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,id) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]

  

可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。

不到100行代码,我们就通过metaclass实现了一个精简的ORM框架。

小结

metaclass是Python中非常具有魔术性的对象,它可以改变类创建时的行为。这种强大的功能使用起来务必小心。

原文地址:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0014319106919344c4ef8b1e04c48778bb45796e0335839000

【转】python面向对象中的元类的更多相关文章

  1. python 面向对象进阶之元类metaclass

    一:知识储备 exec exec:三个参数 参数一:字符串形式的命令 参数二:全局作用域(字典形式),如果不指定,默认为globals() 参数三:局部作用域(字典形式),如果不指定,默认为local ...

  2. Python面向对象篇之元类,附Django Model核心原理

    关于元类,我写过一篇,如果你只是了解元类,看下面这一篇就足够了. Python面向对象之类的方法和属性 本篇是深度解剖,如果你觉得元类用不到,呵呵,那是因为你不了解Django. 在Python中有一 ...

  3. python 面向对象十二 元类

    一.类也是对象 只要使用关键字class,Python解释器在执行的时候就会创建一个对象.下面的代码段: class ObjectCreator(object): pass 将在内存中创建一个对象,名 ...

  4. python 面向对象编程 之 元类

    元类是类的类,使我们自定义的类,即我们用class定义类本质就是元类,是类的模板 四步走: 一:控制class定义类的过程 1.先拿到类名 2.在拿到基类 3.执行类体代码,得到名称空间的dict 4 ...

  5. [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式

    使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...

  6. Python 中的元类到底是什么?这篇恐怕是最清楚的了

    类作为对象 在理解元类之前,您需要掌握 Python 的类.Python 从 Smalltalk 语言中借用了一个非常特殊的类概念. 在大多数语言中,类只是描述如何产生对象的代码段.在 Python ...

  7. 深刻理解Python中的元类metaclass(转)

    本文由 伯乐在线 - bigship 翻译 英文出处:stackoverflow 译文:http://blog.jobbole.com/21351/ 译注:这是一篇在Stack overflow上很热 ...

  8. 深刻理解Python中的元类(metaclass)

    译注:这是一篇在Stack overflow上很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍然觉得 ...

  9. Python中的元类(metaclass)

    推荐+收藏:深刻理解Python中的元类(metaclass) 做一些笔记学习学习: 在大多数编程语言中,类就是用来描述如何生成一个对象的代码段,在Python中类也是一个对象,这个(类)对象自身拥有 ...

随机推荐

  1. python 中property函数如何实现

    实际上,在python中property(fget,fset,fdel,doc)函数不是一个真正的函数,他其实是拥有很多特殊方法的类. 这特殊类总的很多方法完成了property函数中的所有工作,涉及 ...

  2. java中的static方法和实例方法区别

    1.static方法是大家共享的资源,放在内存堆中,比如村里的河水,每个人都可以取,而且不管你创建多少个实例,该方法在内存中只有一个,节省内存空间, 而且访问速度也是比较快的. 2.实例方法就不同,它 ...

  3. centos6 找不到 phpize

    安装php-devel yum install php-devel.i686

  4. apache POI 操作excel<导入导出>

    1.首先导入maven依赖 <!-- POI核心依赖 --> <dependency> <groupId>org.apache.poi</groupId> ...

  5. A - Bi-shoe and Phi-shoe 欧拉函数

    /** 题目:A - Bi-shoe and Phi-shoe 链接:https://vjudge.net/contest/154246#problem/A 题意:每一个数都有一个得分,它的得分就是, ...

  6. php 、asp、 java、 c#、 delphi之间的语言对照

    PHP是一种跨平台的server端的嵌入式脚本语言.它大量地借用C,Java和Perl语言的语法, 并耦合PHP自己的特性,使WEB开发人员能够高速地写出动态产生页面. 它支持眼下绝大多数数据库. 另 ...

  7. 18 已知下面的字符串是通过RANDOM随机数变量md5sum|cut-c 1-8截取后的结果

    面试题18:破解RANDOM随机数案例 已知下面的字符串是通过RANDOM随机数变量md5sum后,再截取一部分连续字符串的结果,请破解这些字符串对应的使用md5sum处理前的RANDOM对应的数字? ...

  8. Style Lessons in Clarity and Grace (11th Edition)中文翻译

    Joseph, Williams. "Style: Lessons in Clarity and Grace." Pearson Schweiz Ag (2014). 下载地址:h ...

  9. Struts2 Action/动作

    动作是Struts2框架的核心,因为他们的任何MVC(模型 - 视图 - 控制器)框架.每个URL将被映射到一个特定的动作,它提供了来自用户的请求提供服务所需的处理逻辑. 但动作也提供其他两个重要的能 ...

  10. 如何用 JavaScript 控制 Arduino?

    Arduino 运行 C 语言,而主控端运行 JavaScript,一次要编写和维护两种程序.既然浏览器和服务器都用 JavaScript,若 Arduino 也能用 JavaScript 控制,那岂 ...