Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 12565
Accepted: 6043

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

USACO 2005 December Gold

【题解】

      ①区间前缀和差分约束

      ②对于有解的问题dfs_SPFA很慢

      ③推荐双端队列和fread读入优化

#include<queue>
#include<stdio.h>
#define inf 1000000007
#define go(i,a,b) for(int i=a;i<=b;i++)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
const int N=2003;bool inq[N];
struct E{int v,next,w;}e[N*200];
int n,X,Y,A,B,D,head[N],k=1,d[N],negative;
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;} inline char Getchar()
{
static char C[1000000],*p1,*p2;
if(p1==p2)p2=(p1=C)+fread(C,1,1000000,stdin);
if(p1==p2)return EOF;return *p1++;
} inline void Read(int &x)
{
x=0;char c=Getchar();
while(c<'0'||c>'9')c=Getchar();
while(c>='0'&&c<='9')x=x*10+c-'0',c=Getchar();
} void Build()
{
go(i,1,X)Read(A),Read(B),Read(D),ADD(A,B,D);
go(i,1,Y)Read(A),Read(B),Read(D),ADD(B,A,-D);
go(i,2,n)ADD(i,i-1,0);
} std::queue<int>q;
void SPFA()
{
go(i,1,n)d[i]=inf;d[1]=0;q.push(1);int vis[N]={0};
while(!q.empty()){int u=q.front();q.pop();inq[u]=0;
fo(i,head,u)if(d[u]+e[i].w<d[v])
{
d[v]=d[u]+e[i].w;
if(++vis[v]>n){negative=1;return;}
!inq[v]?q.push(v),inq[v]=1:1;}
}
} int main()
{
Read(n);Read(X);Read(Y); Build(); SPFA(); if(negative){puts("-1");return 0;}
if(d[n]==inf){puts("-2");return 0;}
if(d[n]!=inf){printf("%d\n",d[n]);return 0;}
}//Paul_Guderian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

【POJ 3169 Layout】的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  6. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

  7. 【POJ 2572 Advertisement】

    Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 947Accepted: 345Special Judge Description ...

  8. 【POJ 1201 Intervals】

    Time Limit: 2000MSMeamory Limit: 65536K Total Submissions: 27949Accepted: 10764 Description You are ...

  9. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

随机推荐

  1. wamp环境下安装imagick扩展

    先上图,如下是安装成功后的phpinfo()界面: 安装步骤: 1.先确定安装版本,比如我的的php : php7.0.12  x86 ts 那么就需要三方版本 要一致:imagick软件本身( 如x ...

  2. 查看ubuntu版本号命令

    1.uname -a 查看内核版本号 2.cat /etc/issue 查看ubuntu版本号 3.sudo lsb_release -a 查看ubuntu版本号

  3. Python Web开发中,WSGI协议的作用和实现原理详解

    首先理解下面三个概念: WSGI:全称是Web Server Gateway Interface,WSGI不是服务器,python模块,框架,API或者任何软件,只是一种规范,描述web server ...

  4. YUM工具使用

    一.yum命令概述: 1.简介: yum命令时在Fedora和RedHat以及SUSE中基于rpm的软件包管理器,它可以使系统管理人员交互和自动化地更细与管理RPM软件包,能够从指定的服务器自动下载R ...

  5. 深入了解jQuery Mobile-3装载器

    介绍 当jQuery Mobile通过Ajax加载内容或用于自定义通知时,会显示一个小的加载叠加层. 标准loader $( document ).on( "click", &qu ...

  6. Kubernetes-Service Account

    kube-apiserver 配置文件:/etc/kubernetes/apiserver KUBE_API_ADDRESS="--insecure-bind-address=0.0.0.0 ...

  7. Android面试收集录 文件存储

    1.请描述Android SDK支持哪些文件存储技术? 使用SharePreferences保存key-value类型的数据 流文件存储(openFileOutput+openFileInput或Fi ...

  8. 【数据库】 SQLite 语法

    [数据库] SQLite 语法 一 . 创建数据库 1. 只需创建数据库,只需创建文件,操作时将连接字符串指向该文件即可 2. 连接字符串 : data source = FilePath; 不能加密 ...

  9. MySQL☞create语句

    几种常用的建表语句: 1.最简单的建表语句: create table 表名( 列名1 数据类型(长度), 列名2 数据类型(长度), ... ) 2.带主键的建表语句: CREATE TABLE 表 ...

  10. swarm 服务器安装

    apt install docker.io-----------------------配置加速器.私有仓库地址---------------------mkdir -p /etc/dockertee ...