这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因...........

你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里面)奇数位小于偶数位而且他们内部分别递增,那么就是在一个1~2*n的数列上选取一些书作为左括号,一些数作为右括号,左括号为奇数位右括号为偶数位,且是合法的匹配因为都是n个,所以我们就是在进行n对括号匹配。

这道题的分解质因数就用组合数求就好了。就是先筛质数并记录一个数的最小质因子,然后跳着筛,并记录质数个数,最后在对质数进行快速幂(不快速幂也行而且或许更优),效率是O(n*不可忽略的某常数)..

#include <cstdio>
#include <cstring>
using namespace std;
typedef int LL;
const LL N=;
LL prime[N],size[N],p,n,len,num[N];
bool isnot[N];
void Pre(){
for(LL i=;i<=(n<<);i++){
if(!isnot[i])prime[++len]=i,num[i]=len;
for(LL j=;prime[j]*i<=(n<<);j++){
isnot[prime[j]*i]=,num[prime[j]*i]=j;
if(i%prime[j]==)break;
}
}
}
void get(LL x,LL s){
while(x!=){
size[num[x]]+=s;
x/=prime[num[x]];
}
}
inline void Pow(long long &ans,LL x,LL y){
while(y){
if(y&)ans=ans*x%p;
y>>=,x=x*x%p;
}
}
int main(){
scanf("%d%d",&n,&p);Pre();
for(LL i=n+;i<=(n<<);i++)get(i,);
for(LL i=;i<=n;i++)get(i,-);
register long long ans=;
for(LL i=;i<=len;i++)
if(size[i])
Pow(ans,prime[i],size[i]);
printf("%lld",ans);
}

【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数的更多相关文章

  1. bzoj 1485 [HNOI2009]有趣的数列 卡特兰数

    把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...

  2. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  3. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  4. [HNOI2009]有趣的数列 卡特兰数

    题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...

  5. BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  6. [HNOI2009] 有趣的数列——卡特兰数与杨表

    [HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  7. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  8. luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解

    打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$. 对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可. code: #include < ...

  9. BZOJ 1485: [HNOI2009]有趣的数列

    Description 求长度为 \(2n\) 的序列.要求 1. \(a_1<a_3<a_5<...<a_{2n-1}\) . 2. \(a_2<a_4<a_6& ...

随机推荐

  1. JS 定时器,定时调用PHP

    $(function() { var voiceplay=function(){ var site = location.href.split('_cms')[0] + '_cms/'; $.ajax ...

  2. jmeter测试报告优化

    1.下载jmeter.results.shanhe.me.xsl 将该文件拷贝到jmeter\extras目录下 2.修改jmeter.results.shanhe.me.xsl 这里直接拷贝 jme ...

  3. PHP代码统计文件大小(自动确定单位)

    php中有一个系统自带的计算文件大小的函数,就是filesize(),但是这个函数是以字节为单位的,但是在一些情况下,我们需要很直观的了解一个文件大小,就不仅仅需要字节B这个单位了,还需要KB,MB, ...

  4. 浅谈 kubernetes service 那些事 (下篇)

    欢迎访问网易云社区,了解更多网易技术产品运营经验. 五.K8s 1.8 新特性--ipvs ipvs与iptables的性能差异 随着服务的数量增长,IPTables 规则则会成倍增长,这样带来的问题 ...

  5. loadrunner创建测试脚本运行无响应 不记录脚本

    解决一运行User Generator直接程序卡死无响应的办法. (1)“我的电脑”点右键->属性->高级 点选“性能”中的“设置” (2)打开对话框后,进入“数据执行保护”,如果空白框中 ...

  6. Windows模拟linux终端工具Cmder+Gow

    1. 说明 Cmder:Windows下的终端模拟器. Gow: Windows下模拟Linux命令行工具集合.可以在windows执行linux下的大部分命令,如ls.grep.xargs等. 2. ...

  7. Linux-ls,cd,type命令

    windows: dll:dynamic link library,动态链接库 Linux: .so:shared object,共享对象 操作系统: kernel:内核: 1.进程管理 2.内核管理 ...

  8. Python第三方库之openpyxl(3)

    Python第三方库之openpyxl(3) 区域图 区域图类似于折线图,绘图线下面的区域会被填充,通过将分组设置为“standard”.“stacked”或“percentStacked”,可以获得 ...

  9. Python升级3.6 强力Django+Xadmin打造在线教育平台

    第 1 章 课程介绍 1-1 项目演示和课程介绍: 第 2 章 Windows下搭建开发环境 2-1 Pycharm.Navicat和Python解释器的安装: Pycharmhttp://www.j ...

  10. 用Python 的一些用法与 JS 进行类比,看有什么相似?

    Python 是一门运用很广泛的语言,自动化脚本.爬虫,甚至在深度学习领域也都有 Python 的身影.作为一名前端开发者,也了解 ES6 中的很多特性借鉴自 Python (比如默认参数.解构赋值. ...