[Leetcode] Binary tree maximum path sum求二叉树最大路径和
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example:
Given the below binary tree,
1
/ \
2 3
Return6.
思路:题目中说明起始节点可以是任意节点,所以,最大的路径和不一样要经过root,可以是左子树中某一条,或者是右子树中某一条,当然也可能是经过树的根节点root的。递归式是应该是这三者中选出最大者。这题是看完yucoding的博客才算可能理解,这里只是用中文讲解该博客中的分析过程。举例子:
对树中的任一节点,当有一条路径经过它时(不一定为最大),有两种情况:
1)“顶节点”为当前节点时,如当前节点为2时,路径为6->4->2->5->-3;
2)“顶节点”为当前节点的父节点1,当前节点为2时,路径为-3->5->2->1->-3->6
对某个节点a,最大路径为:
i) max_top(a)为第一种情况下的最大路径和;
ii) max_single(a)为第二种情况下的最大路径和;
则,max_top(a)=Max{max_single(a), max_single(a->left)+max_single(a->right)+a->val, a->val};
max_single(a)=Max{max_single(a->left)+a->val, max_single(a->right)+a->val, a->val};
最每个节点a,res=max(res, max_top(a))。
其实,个人这样理解的,以当前点为“顶结点”,则,需从只有一条子树的和、两条子树加顶点的和、该顶点的值三种中选出最大值作为所求值;若以当前点的父结点为顶结点,说明这条路径必须经过该父结点,所以,求经过当前结点的路径,只能是从叶结点到当前结点(再到父结点),即只有一条而不能是两条之和,若是再求两条之后,则后续就不能通过该父结点了。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxPathSum(TreeNode *root)
{
int res = root->val;
maxPathSumDFS(root, res);
return res;
}
int maxPathSumDFS(TreeNode *root, int &res) {
if (!root) return ;
int left = maxPathSumDFS(root->left, res);
int right = maxPathSumDFS(root->right, res);
int top = root->val + (left > ? left : ) + (right > ? right : ); //第一种
res = max(res, top);
return max(left, right) > ? max(left, right) + root->val : root->val; //第二种
}
};
//代码来源Grandyang
[Leetcode] Binary tree maximum path sum求二叉树最大路径和的更多相关文章
- [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- [LeetCode] 124. Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...
- LeetCode OJ:Binary Tree Maximum Path Sum(二叉树最大路径和)
Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...
- 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum
题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...
- [leetcode]Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- LeetCode: Binary Tree Maximum Path Sum 解题报告
Binary Tree Maximum Path SumGiven a binary tree, find the maximum path sum. The path may start and e ...
- [LeetCode] Binary Tree Maximum Path Sum(最大路径和)
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- [leetcode]Binary Tree Maximum Path Sum @ Python
原题地址:https://oj.leetcode.com/problems/binary-tree-maximum-path-sum/ 题意: Given a binary tree, find th ...
- leetcode–Binary Tree Maximum Path Sum
1.题目说明 Given a binary tree, find the maximum path sum. The path may start and end at any node in t ...
随机推荐
- PC时代 常用搜索引擎高级指令 勿忘
PC时代,高级指令辅助检索,高效输出既定的需求,被广泛运用于Search Engine. 布局search入口的平台,高级指令都不可或缺.现今,高级指令的高效性,仍然主要体现在搜索引擎检索过程中. i ...
- U盘被分区后恢复方法
一:运行cmd 二:输入diskpart,按enter. 三:输入list disk,按enter. 四:选择优U盘,输入select disk X(X代表磁盘后面的数字0.1,可磁盘的大小来判断数字 ...
- JavaSE库存管理系统项目实战
需求分析 企业库房用于存放成品.半成品.原材料.工具等物资,一般情况下,这些物资统称为物料.库存管理常见业务包括物资的入库.出库.盘点.退货.报废以及财务核算等,业务逻辑比较复杂,库房信息系统项目开发 ...
- Tomcat+nginx+keepalived+memcached实现双VIP负载均衡及Session会话保持
准备好tomcat 第一台 tar vxf apache-tomcat-7.0.54.tar.gz mv apache-tomcat-7.0.54 /usr/local/tomcat tar vxf ...
- 004---Linux系统设置
Linux版本相关命令 查看系统版本:cat /etc/redhat-release 查看系统内核版本以及位数:uname -r [root@hostname1 ~]# cat /etc/redhat ...
- @Transactional spring 事务(转载)
原文链接: http://www.cnblogs.com/sweetchildomine/p/6978037.html?utm_source=itdadao&utm_medium=referr ...
- 开启TCP BBR拥塞控制算法
原文来自:https://github.com/iMeiji/shadowsocks_install/wiki/%E5%BC%80%E5%90%AFTCP-BBR%E6%8B%A5%E5%A1%9E% ...
- 两种方法实现Python二分查找算法
两种方法实现Python二分查找算法 一. ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 arr=[1,3,6,9,10,20,30] def findnumber( ...
- Android Stadio调试gradle 插件 || Android Stadio 远程调试 || Anroid APT调试
有时候,自己开发了gralde插件,想调试一下.毕竟打印log 成本太高.效率太低.怎么做呢? 第一种方法: 1.执行gradlew 命令的时候,加上几个参数:-Dorg.gradle.debug=t ...
- VS2010使用NuGet程序包管理器
使用C#过程中经常需要使用一些扩展包,例如sqlite,json解析等. VS2010自带了一个扩展管理器,里面可以下载到AStyle,Visual Assit等有用的插件. VS2010中点击[工具 ...