BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 3236 Solved: 1651
[Submit][Status][Discuss]
Description

Input
Output
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
Sample Input
1 2
3 4
3 2
4 2
Sample Output
【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。
题目求的是最长反链长度 = 最小链覆盖 = 最大点独立集 = n - 最大匹配数
反链指的是一个集合,里边的点互不相通
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int G[maxn][maxn],n,m,p[maxn],lk[maxn],vis[maxn],ans = 0;
void floyd(){REP(k,n) REP(i,n) REP(j,n) G[i][j] |= (G[i][k] & G[k][j]);}
bool find(int u){
REP(i,n)
if (G[u][i] && !vis[i]){
vis[i] = true;
if (!lk[i] || find(lk[i])){
lk[i] = u; return true;
}
}
return false;
}
int main(){
int a,b; n = RD(); m = RD();
while (m--){
a = RD(); b = RD();
G[a][b] = 1;
}
floyd();
REP(i,n) {memset(vis,0,sizeof(vis)); if (find(i)) ans++;}
printf("%d",n - ans);
return 0;
}
BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】的更多相关文章
- BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...
- [图论训练]1143: [CTSC2008]祭祀river 二分图匹配
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在 水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)
题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...
- bzoj1143: [CTSC2008]祭祀river 最长反链
题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- bzoj1143: [CTSC2008]祭祀river && bzoj27182718: [Violet 4]毕业旅行
其实我至今不懂为啥强联通缩点判入度会错... 然后这个求的和之前那道组合数学一样,就是最长反链=最小链覆盖=最大独立集. #include<cstdio> #include<iost ...
- BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- [CTSC2008]祭祀(二分图匹配)
没有SPJ时显然是不需要输出方案的.不需要输出方案很好做,先把边扩展(因为会往下流),然后求最大独立集,最大独立集=n-最小点覆盖,因为其是最大独立集的补集.如何求最小点覆盖呢?毕竟我写过最大权闭合子 ...
随机推荐
- php-5.6.26源代码 - hash存储结构 - 添加
添加 , (void *)module, sizeof(zend_module_entry), (void**)&module_ptr){ // zend_hash_add 定义在文件“php ...
- php 使用当前时间点进行时间范围查询
/** * 判断是否是吃早饭时间 */ $nowtime = time(); $start = strtotime('8:30:00'); $end = strtotime('9:30:00'); i ...
- scala成长之路(1)基本语法和数据类型
scala作为JVM上的Lisp,是一种geek类型的编程语言,也一直是我等java程序员眼中的梦寐以求的一门技能,遂下定决心花一段时间好好学习scala.第一天学习,主要介绍与java在编程上的主要 ...
- Python爬虫基础(一)——HTTP
前言 因特网联系的是世界各地的计算机(通过电缆),万维网联系的是网上的各种各样资源(通过超文本链接),如静态的HTML文件,动态的软件程序······.由于万维网的存在,处于因特网中的每台计算机可以很 ...
- (转)Updates were rejected because the tip of your current branch is behind
刚创建的github版本库,在push代码时出错: $ git push -u origin masterTo git@github.com:******/Demo.git ! [rejected] ...
- C++代码理解 (强制指针转换)
#include<iostream> using namespace std; class A { public: A() { a=; b=; c=; f=; } private: int ...
- java入门---windows和Linux,UNIX,Solaris,FreeBSD下开发环境配置
首先来看Windows下的操作.我们需要下载java开发工具包JDK.下载地址:http://www.oracle.com/technetwork/java/javase/downloads/ ...
- 521. [NOIP2010] 引水入城 cogs
521. [NOIP2010] 引水入城 ★★★ 输入文件:flow.in 输出文件:flow.out 简单对比时间限制:1 s 内存限制:128 MB 在一个遥远的国度,一侧是风景秀 ...
- centos下搭建svn服务器端/客户端
1.安装 yum install subversion httpd mod_dav_svn 2.创建仓库存储代码 mkdir /var/repos svnadmin create /var/repos ...
- shell eval命令使用
eval命令将会首先扫描命令行进行所有的置换,然后再执行该命令. 该命令适用于那些一次扫描无法实现其功能的变量.该命令对变量进行两次扫描. 这些需要进行两次扫描的变量有时被称为复杂变量.不过这些变量本 ...