BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 3236 Solved: 1651
[Submit][Status][Discuss]
Description
Input
Output
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
Sample Input
1 2
3 4
3 2
4 2
Sample Output
【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。
题目求的是最长反链长度 = 最小链覆盖 = 最大点独立集 = n - 最大匹配数
反链指的是一个集合,里边的点互不相通
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int G[maxn][maxn],n,m,p[maxn],lk[maxn],vis[maxn],ans = 0;
void floyd(){REP(k,n) REP(i,n) REP(j,n) G[i][j] |= (G[i][k] & G[k][j]);}
bool find(int u){
REP(i,n)
if (G[u][i] && !vis[i]){
vis[i] = true;
if (!lk[i] || find(lk[i])){
lk[i] = u; return true;
}
}
return false;
}
int main(){
int a,b; n = RD(); m = RD();
while (m--){
a = RD(); b = RD();
G[a][b] = 1;
}
floyd();
REP(i,n) {memset(vis,0,sizeof(vis)); if (find(i)) ans++;}
printf("%d",n - ans);
return 0;
}
BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】的更多相关文章
- BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...
- [图论训练]1143: [CTSC2008]祭祀river 二分图匹配
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在 水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)
题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...
- bzoj1143: [CTSC2008]祭祀river 最长反链
题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- bzoj1143: [CTSC2008]祭祀river && bzoj27182718: [Violet 4]毕业旅行
其实我至今不懂为啥强联通缩点判入度会错... 然后这个求的和之前那道组合数学一样,就是最长反链=最小链覆盖=最大独立集. #include<cstdio> #include<iost ...
- BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- [CTSC2008]祭祀(二分图匹配)
没有SPJ时显然是不需要输出方案的.不需要输出方案很好做,先把边扩展(因为会往下流),然后求最大独立集,最大独立集=n-最小点覆盖,因为其是最大独立集的补集.如何求最小点覆盖呢?毕竟我写过最大权闭合子 ...
随机推荐
- Node.js(一)----安装
1.下载 地址 https://nodejs.org/en/download/ 注: 系统为ubuntu 下载的源码包 tar.gz 或者 wget https://nodejs.org/dist/v ...
- PHP计算两个时间戳之间间隔时分秒
/功能:计算两个时间戳之间相差的日时分秒//$begin_time 开始时间戳//$end_time 结束时间戳function timediff($begin_time,$end_time){ if ...
- Go web表单验证
开发Web的一个原则就是,不能信任用户输入的任何信息,所以验证和过滤用户的输入信息就变得非常重要 必填字段 if len(r.Form["username"][0])==0{ // ...
- Excel学习路径总结
本片涉及从入门到Excel的各个方向,包含众多资料和自己学习的心得,希望您可以仔细阅之: 入门篇: 无论是软件,还是编程,最好的入门就是通过看视频来学习,视频优点为很容易看清楚,手把手教授,不容易 ...
- C语言实例解析精粹学习笔记——33(扑克牌的结构表示)
实例33: 使用“结构”定义一副扑克牌,并对变量赋值,输出结果 思路: 扑克牌有4种花色,用枚举类型表示花色,其他都是结构体的简单应用 程序代码: #include <stdio.h> # ...
- 001---Linux系统的启动过程
Linux系统的启动过程 按下电源 开机自检(BIOS):检查cpu.内存.硬盘是否有问题,找到启动盘. MBR引导(master boot record):主引导记录,读取存储设备的512bytes ...
- R语言学习笔记(十五):获取文件和目录信息
file.info() 参数是表示文件名称的字符串向量,函数会给出每个文件的大小.创建时间.是否为目录等信息. > file.info("z.txt") size isdir ...
- 牛客暑假多校第六场I-Team Rocket
一.题意 我们是穿越银河的火箭队....... 给出若干个区间,之后给出若干个点,要求对每个点求出,第一个覆盖点的区间的数量,之后用当前所有点覆盖的区间的序号的乘积结合输入的Y来生成下一位点.最后输出 ...
- 分布式redis一些小结
本文围绕以下几点进行阐述: 为什么使用 Redis 使用 Redis 有什么缺点 单线程的 Redis 为什么这么快 Redis 的数据类型,以及每种数据类型的使用场景 Redis 的过期策略以及内存 ...
- P1991 无线通讯网
P1991 无线通讯网 题目描述 国防部计划用无线网络连接若干个边防哨所.2 种不同的通讯技术用来搭建无线网络: 每个边防哨所都要配备无线电收发器:有一些哨所还可以增配卫星电话. 任意两个配备了一条卫 ...