在Spark或Hadoop MapReduce的分布式计算框架中,数据被按照key分成一块一块的分区,打散分布在集群中各个节点的物理存储或内存空间中,每个计算任务一次处理一个分区,但map端和reduce端的计算任务并非按照一种方式对相同的分区进行计算,例如,当需要对数据进行排序时,就需要将key相同的数据分布到同一个分区中,原分区的数据需要被打乱重组,这个按照一定的规则对数据重新分区的过程就是Shuffle(洗牌)

Spark Shuffle的两阶段

对于Spark来讲,一些Transformation或Action算子会让RDD产生宽依赖,即parent RDD中的每个Partition被child RDD中的多个Partition使用,这时便需要进行Shuffle,根据Record的key对parent RDD进行重新分区。如果对这些概念还有一些疑问,可以参考我的另一篇文章《Spark基本概念快速入门》

以Shuffle为边界,Spark将一个Job划分为不同的Stage,这些Stage构成了一个大粒度的DAG。Spark的Shuffle分为Write和Read两个阶段,分属于两个不同的Stage,前者是Parent Stage的最后一步,后者是Child Stage的第一步。如下图所示:

 

执行Shuffle的主体是Stage中的并发任务,这些任务分ShuffleMapTask和ResultTask两种,ShuffleMapTask要进行Shuffle,ResultTask负责返回计算结果,一个Job中只有最后的Stage采用ResultTask,其他的均为ShuffleMapTask。如果要按照map端和reduce端来分析的话,ShuffleMapTask可以即是map端任务,又是reduce端任务,因为Spark中的Shuffle是可以串行的;ResultTask则只能充当reduce端任务的角色。

我把Spark Shuffle的流程简单抽象为以下几步以便于理解:

  • Shuffle Write
    1. Map side combine (if needed)
    2. Write to local output file
  • Shuffle Read
    1. Block fetch
    2. Reduce side combine
    3. Sort (if needed)

Write阶段发生于ShuffleMapTask对该Stage的最后一个RDD完成了map端的计算之后,首先会判断是否需要对计算结果进行聚合,然后将最终结果按照不同的reduce端进行区分,写入当前节点的本地磁盘。
Read阶段开始于reduce端的任务读取ShuffledRDD之时,首先通过远程或本地数据拉取获得Write阶段各个节点中属于当前任务的数据,根据数据的Key进行聚合,然后判断是否需要排序,最后生成新的RDD。

Spark Shuffle具体实现的演进

在具体的实现上,Shuffle经历了Hash、Sort、Tungsten-Sort三阶段:

  • Spark 0.8及以前 Hash Based Shuffle
    在Shuffle Write过程按照Hash的方式重组Partition的数据,不进行排序。每个map端的任务为每个reduce端的Task生成一个文件,通常会产生大量的文件(即对应为M*R个中间文件,其中M表示map端的Task个数,R表示reduce端的Task个数),伴随大量的随机磁盘IO操作与大量的内存开销。
    Shuffle Read过程如果有combiner操作,那么它会把拉到的数据保存在一个Spark封装的哈希表(AppendOnlyMap)中进行合并。
    在代码结构上:

    • org.apache.spark.storage.ShuffleBlockManager负责Shuffle Write
    • org.apache.spark.BlockStoreShuffleFetcher负责Shuffle Read
    • org.apache.spark.Aggregator负责combine,依赖于AppendOnlyMap
  • Spark 0.8.1 为Hash Based Shuffle引入File Consolidation机制
    通过文件合并,中间文件的生成方式修改为每个执行单位(一个Executor中的执行单位等于Core的个数除以每个Task所需的Core数)为每个reduce端的任务生成一个文件。最终可以将文件个数从M*R修改为E*C/T*R,其中,E表示Executor的个数,C表示每个Executor中可用Core的个数,T表示Task所分配的Core的个数。
    是否采用Consolidate机制,需要配置spark.shuffle.consolidateFiles参数

  • Spark 0.9 引入ExternalAppendOnlyMap
    在combine的时候,可以将数据spill到磁盘,然后通过堆排序merge(可以参考这篇文章,了解其具体实现)

  • Spark 1.1 引入Sort Based Shuffle,但默认仍为Hash Based Shuffle
    在Sort Based Shuffle的Shuffle Write阶段,map端的任务会按照Partition id以及key对记录进行排序。同时将全部结果写到一个数据文件中,同时生成一个索引文件,reduce端的Task可以通过该索引文件获取相关的数据。
    在代码结构上:

    • 从以前的ShuffleBlockManager中分离出ShuffleManager来专门管理Shuffle Writer和Shuffle Reader。两种Shuffle方式分别对应
      org.apache.spark.shuffle.hash.HashShuffleManager和
      org.apache.spark.shuffle.sort.SortShuffleManager,
      可通过spark.shuffle.manager参数配置。两种Shuffle方式有各自的ShuffleWriter:org.apache.spark.shuffle.hash.HashShuffle和org.apache.spark.shuffle.sort.SortShuffleWriter;但共用一个ShuffleReader,即org.apache.spark.shuffle.hash.HashShuffleReader。
    • org.apache.spark.util.collection.ExternalSorter实现排序功能。可通过对spark.shuffle.spill参数配置,决定是否可以在排序时将临时数据Spill到磁盘。
  • Spark 1.2 默认的Shuffle方式改为Sort Based Shuffle

  • Spark 1.4 引入Tungsten-Sort Based Shuffle
    将数据记录用序列化的二进制方式存储,把排序转化成指针数组的排序,引入堆外内存空间和新的内存管理模型,这些技术决定了使用Tungsten-Sort要符合一些严格的限制,比如Shuffle dependency不能带有aggregation、输出不能排序等。由于堆外内存的管理基于JDK Sun Unsafe API,故Tungsten-Sort Based Shuffle也被称为Unsafe Shuffle。
    在代码层面:

    • 新增org.apache.spark.shuffle.unsafe.UnsafeShuffleManager
    • 新增org.apache.spark.shuffle.unsafe.UnsafeShuffleWriter(用java实现)
    • ShuffleReader复用HashShuffleReader
  • Spark 1.6 Tungsten-sort并入Sort Based Shuffle
    由SortShuffleManager自动判断选择最佳Shuffle方式,如果检测到满足Tungsten-sort条件会自动采用Tungsten-sort Based Shuffle,否则采用Sort Based Shuffle。
    在代码方面:

    • UnsafeShuffleManager合并到SortShuffleManager
    • HashShuffleReader 重命名为BlockStoreShuffleReader,Sort Based Shuffle和Hash Based Shuffle仍共用ShuffleReader。
  • Spark 2.0 Hash Based Shuffle退出历史舞台
    从此Spark只有Sort Based Shuffle。

Spark Shuffle源码结构

这里以最新的Spark 2.1为例简单介绍一下Spark Shuffle相关部分的代码结构

  • Shuffle Write

    • ShuffleWriter的入口链路

      org.apache.spark.scheduler.ShuffleMapTask#runTask
      ---> org.apache.spark.shuffle.sort.SortShuffleManager#getWriter
      ---> org.apache.spark.shuffle.sort.SortShuffleWriter#write(如果是普通sort)
      ---> org.apache.spark.shuffle.sort.UnsafeShuffleWriter#write (如果是Tungsten-sort)
    • SortShuffleWriter的主要依赖
      org.apache.spark.util.collection.ExternalSorter 负责按照(partition id, key)排序,如果需要Map side combine,需要提供aggregator
      ---> org.apache.spark.util.collection.PartitionedAppendOnlyMap
    • UnsafeShuffleWriter的主要依赖
      org.apache.spark.shuffle.sort.ShuffleExternalSorter (Java实现)
  • Shuffle Read
    • ShuffleReader的入口链路

      org.apache.spark.rdd.ShuffledRDD#compute
      ---> org.apache.spark.shuffle.sort.SortShuffleManager#getReader
      ---> org.apache.spark.shuffle.BlockStoreShuffleReader#read
    • ShuffleReader主要依赖
      org.apache.spark.Aggregator 负责combine
      ---> org.apache.spark.util.collection.ExternalAppendOnlyMap
      org.apache.spark.util.collection.ExternalSorter 取决于是否需要对最终结果进行排序

参考资料及推荐阅读

  1. Spark 1.0之前Hash Based Shuffle的原理

  2. Spark 1.1时Sort Based Shuffle的资料
  3. Spark 1.2之前两种Shuffle方式的分析和对比
  4. Spark 1.6之前三种Shuffle方式的分析和对比
  5. Spark 1.6之前Sort Based Shuffle的源码和原理
  6. Spark 1.6之前Tungsten-sort Based Shuffle的原理

Spark Shuffle的技术演进的更多相关文章

  1. Spark大数据处理技术

    全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及 ...

  2. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

  3. spark shuffle 相关细节整理

    1.Shuffle Write 和Shuffle Read具体发生在哪里 2.哪里用到了Partitioner 3.何为mapSideCombine 4.何时进行排序 之前已经看过spark shuf ...

  4. Spark Shuffle数据处理过程与部分调优(源码阅读七)

    shuffle...相当重要,为什么咩,因为shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,可以看到Spark提供多种计算结果处理方式,对shuf ...

  5. Spark shuffle详细过程

    有许多场景下,我们需要进行跨服务器的数据整合,比如两个表之间,通过Id进行join操作,你必须确保所有具有相同id的数据整合到相同的块文件中.那么我们先说一下mapreduce的shuffle过程. ...

  6. MapReduce Shuffle原理 与 Spark Shuffle原理

    MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一 ...

  7. Spark Shuffle实现

    Apache Spark探秘:Spark Shuffle实现 http://dongxicheng.org/framework-on-yarn/apache-spark-shuffle-details ...

  8. Spark Shuffle模块——Suffle Read过程分析

    在阅读本文之前.请先阅读Spark Sort Based Shuffle内存分析 Spark Shuffle Read调用栈例如以下: 1. org.apache.spark.rdd.Shuffled ...

  9. [Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情

    本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Mem ...

随机推荐

  1. 【BZOJ4444】[Scoi2015]国旗计划 双指针+倍增

    [BZOJ4444][Scoi2015]国旗计划 Description A国正在开展一项伟大的计划——国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形 ...

  2. 【BZOJ2882】工艺 后缀自动机

    [BZOJ2882]工艺 Description 小敏和小燕是一对好朋友. 他们正在玩一种神奇的游戏,叫Minecraft. 他们现在要做一个由方块构成的长条工艺品.但是方块现在是乱的,而且由于机器的 ...

  3. onload事件,解决不能在head写代码

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta http-equiv="con ...

  4. Python 编码(一)— Python3

    Unicode 什么是 Unicode 标准 unicode 标准 Unicode 为每个字符提供了一个独特的数字,并且跨平台.设备.应用或者编程语言都是通用的. -- 来自 http://unico ...

  5. junit5荟萃知识点(一):junit5的组成及安装

    1.什么是junit5? 和之前的junit版本不一样,junit5是由三个模块组成. JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage ...

  6. curl学习总结

    1.接口    function interface($postfields=array(),$url){        //设置post请求HTTP头字段的数组        $httpheader ...

  7. MySQL中myisam和innodb的主键索引有什么区别?

    MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址.下图是MyISAM索引的原理图: 这里设表一共有三列,假设我们以Col1为主键,则上图是一个MyISAM表的主索 ...

  8. python函数回顾:getattr()

    描述 getattr() 函数用于返回一个对象属性值. 语法 getattr 语法: getattr(object, name[, default]) 参数 object -- 对象. name -- ...

  9. Linux CentOS使用yum安装Docker

    Docker支持以下的CentOS版本: 目前,CentOS仅发行版本中的内核支持Docker. Docker运行在CentOS7上,要求系统为64位.系统内核版本为3.10以上. Docker运行在 ...

  10. leetCode 64.Minimum Path Sum (最短路) 解题思路和方法

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...