关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已经做了实现,但是这种方法时间复杂度太高,查阅相关资料后我发现有人提出的算法可以将时间复杂度降低为O(nlogn),这种算法的核心思想就是替换(二分法替换),以下为我对这中算法的理解: 
假设随机生成的一个具有10个元素的数组arrayIn[1-10]如[2, 3, 3, 4, 7, 3, 1, 6, 6, 4],求这个数组的最长递增子序列。 
首先定义一个数组arrayOut[1-10]来逐个寻找arrayIn[1-10]中以第i个元素结尾的最长递增子序列的长度。 
定义len来计算相应的长度 
(1)将arrayIn[1]放入arrayOut,此时arrayOut[1]=arrayIn[1]=2,此时len=1; 
(2)将arrayIn[2]放入arrayOut,此时要先寻找arrayIn[2]应该放入的位置,由于arrayIn[2]=3>arrayOut[1]=2,那么arrayIn[2]应该放入的位置为arrayOut[2],这时arrayOut[2]=arrayIn[2]=3,此时len=2; 
(3)将arrayIn[3]放入arrayOut,此时要先寻找arrayIn[3]应该放入的位置,由于arrayIn[3]=3=arrayOut[2]=3,那么arrayIn[3]应该放入的位置为arrayOut[2],这时arrayOut[2]=arrayIn[3]=3,即此时进来的arrayIn[3]替换掉了arrayOut[2],此时len仍然为2; 
(4)对数组arrayIn的后续元素执行以上类似的操作即 
如果arrayIn要放入的元素比arrayOut最后一个元素大的话就放在其后; 
否则寻找一个替换的位置 
这样以来arrayIn元素放入的位置即为len的值,然后判断这次得到的len值与上次的len值的大小,向大的方向更新即可。 
使用二分法来查找arrayIn元素应该放入的位置即可将时间复杂度降为O(nlogn)。 
以下为具体的实现代码(java)

import java.util.Arrays;
import java.util.Random; public class LISUpdate { public static void main(String[] args){ System.out.println("Generating a random array...");
LISUpdate lisUpdate=new LISUpdate();
int[] oldArray=new int[10];
oldArray=lisUpdate.randomArray();
System.out.println(Arrays.toString(oldArray)); //输出生成的随机数组
System.out.println("each LIS array:"); //输出每次计算时arrayOut数组的内容,便于观察
System.out.println("LIS length nlogn is:"+lisUpdate.getLength(oldArray)); //输出最长递增子序列的长度
} public int[] randomArray(){ //生成一个10以内的数组,长度为10
Random random=new Random();
int[] randomArray=new int[10];
for (int i = 0; i < 10; i++) {
randomArray[i]=random.nextInt(10);
} return randomArray;
} public int BinarySearchPosition(int arrayOut[],int left,int right,int key){ //二分查找要替换的位置 int mid; if (arrayOut[right]<key) {
return right+1;
}else {
while(left<right){
mid=(left+right)/2;
if (arrayOut[mid]<key) {
left=mid+1;
}else {
right=mid;
}
}
return left;
} } public int getLength(int[] arrayIn){ //获取最长递增子序列的长度 int position;
int len=1; int[] arrayOut=new int[arrayIn.length+1];//arrayOut[0]没有存放数据
arrayOut[1]=arrayIn[0]; //初始化,长度为1的LIS末尾为arrayIn[0]
for (int i = 1; i < arrayIn.length; i++) {
position=BinarySearchPosition(arrayOut, 1, len, arrayIn[i]);
arrayOut[position]=arrayIn[i];
System.out.println(Arrays.toString(arrayOut));
if (len<position) {
len=position;
}
} return len;
}

需要注意的是:上面代码中输出的arrayOut数组并不是最长递增子序列,我这里选择将其输出只是为了验证算法的执行过程。

对于求最长递减子序列,则可以直接将原数组进行“反转”操作,然后求出反转之后的数组的最长递增子序列的长度即为最长递减子序列的长度。

最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现的更多相关文章

  1. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  2. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  3. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  4. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  5. 最长递增子序列LIS再谈

    DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...

  6. 算法面试题 之 最长递增子序列 LIS

    找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...

  7. 算法之动态规划(最长递增子序列——LIS)

    最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...

  8. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

  9. POJ 1836 Alignment 最长递增子序列(LIS)的变形

    大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 ...

随机推荐

  1. 什么是JavaBeans?

    参看维基百科,归纳出以下几条: JavaBeans是指符合某些标准的类, Bean这个名称用于涵盖这个标准, 其目的在于创建可重用的Java组件. 由于Bean是很“死板”的东西,因此它可以持久存储, ...

  2. 主攻ASP.NET MVC4.0之重生:Jquery Mobile 面板

    左滑动面板效果: 右滑动面板效果: @{ ViewBag.Title = "JQuery Mobile Web Page"; } <!DOCTYPE html> < ...

  3. Plist文件与数据解析

    综述 初步阶段当我们做个需要点数据的练习时(比如购物商品展示),我们可能是将数据直接写在代码中,比如说定义一个字符串数组或存放字典的数组.但这其实并不是一种合理的做法.因为如果当数据修改的时候,就要经 ...

  4. python的一些内置函数

    最近看到一些人写的文章里有提到python的描述符__get__,__set__,__del__. 这里我也小小研究了一下,除了这3个之外还加上过程中学习的几个,比如__call__等. __get_ ...

  5. setfacl设置特定目录的权限

    现有一目录是虚拟机和linux共享的,但是每次程序调用新建的文件都发现没有权限. 于是指定特定目录及其子目录下新建的文件或目录对于用户qhfz都有读写执行的权限 -R表示递归 -m表示设置文件acl规 ...

  6. 什么是OOM?如何解决OOM问题!

    1.什么是OOM? 程序申请内存过大,虚拟机无法满足我们,然后自杀了.这个现象通常出现在大图片的APP开发,或者需要用到很多图片的时候.通俗来讲就是我们的APP需要申请一块内存来存放图片的时候,系统认 ...

  7. GDKOI2017游记

    去年的GDKOI在寒假(虽然我没参加),但由于一些机♂缘♂巧♂合♂,比赛时间变成了开学之后的第一周,于是直接导致了当我的同学们在认真学习的同时,我在广州无所事事地和同学谈♂笑♂风♂生♂.(太好了,可以 ...

  8. windows 10系统更新失败的解决办法

    最近遇到一个问题,系统总是自动下载一个更新,看样子是个补丁吧,但是每次提醒重新启动以安装更新,但每次又安装失败,回退.就这样,下载,重启,安装失败,下载......一直循环,搞得都不敢关机了,因为这样 ...

  9. maven环境变量配置不成功的原因

    在配置java开发环境时,MAVEN_HOME配置后,再将%MAVEN_HOME%\bin加入path后,mvn -v 不成功,显示mvn不是内部命令 网上寻觅各种办法无果 于是弃用MAVEN_HOM ...

  10. java:正则匹配Pattern,Matcher

    一.正则匹配Pattern,Mather String s = "aa424fsfsd92lfjw2755097"; Pattern p = Pattern.compile(&qu ...