最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现
关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已经做了实现,但是这种方法时间复杂度太高,查阅相关资料后我发现有人提出的算法可以将时间复杂度降低为O(nlogn),这种算法的核心思想就是替换(二分法替换),以下为我对这中算法的理解:
假设随机生成的一个具有10个元素的数组arrayIn[1-10]如[2, 3, 3, 4, 7, 3, 1, 6, 6, 4],求这个数组的最长递增子序列。
首先定义一个数组arrayOut[1-10]来逐个寻找arrayIn[1-10]中以第i个元素结尾的最长递增子序列的长度。
定义len来计算相应的长度
(1)将arrayIn[1]放入arrayOut,此时arrayOut[1]=arrayIn[1]=2,此时len=1;
(2)将arrayIn[2]放入arrayOut,此时要先寻找arrayIn[2]应该放入的位置,由于arrayIn[2]=3>arrayOut[1]=2,那么arrayIn[2]应该放入的位置为arrayOut[2],这时arrayOut[2]=arrayIn[2]=3,此时len=2;
(3)将arrayIn[3]放入arrayOut,此时要先寻找arrayIn[3]应该放入的位置,由于arrayIn[3]=3=arrayOut[2]=3,那么arrayIn[3]应该放入的位置为arrayOut[2],这时arrayOut[2]=arrayIn[3]=3,即此时进来的arrayIn[3]替换掉了arrayOut[2],此时len仍然为2;
(4)对数组arrayIn的后续元素执行以上类似的操作即
如果arrayIn要放入的元素比arrayOut最后一个元素大的话就放在其后;
否则寻找一个替换的位置
这样以来arrayIn元素放入的位置即为len的值,然后判断这次得到的len值与上次的len值的大小,向大的方向更新即可。
使用二分法来查找arrayIn元素应该放入的位置即可将时间复杂度降为O(nlogn)。
以下为具体的实现代码(java)
import java.util.Arrays;
import java.util.Random;
public class LISUpdate {
public static void main(String[] args){
System.out.println("Generating a random array...");
LISUpdate lisUpdate=new LISUpdate();
int[] oldArray=new int[10];
oldArray=lisUpdate.randomArray();
System.out.println(Arrays.toString(oldArray)); //输出生成的随机数组
System.out.println("each LIS array:"); //输出每次计算时arrayOut数组的内容,便于观察
System.out.println("LIS length nlogn is:"+lisUpdate.getLength(oldArray)); //输出最长递增子序列的长度
}
public int[] randomArray(){ //生成一个10以内的数组,长度为10
Random random=new Random();
int[] randomArray=new int[10];
for (int i = 0; i < 10; i++) {
randomArray[i]=random.nextInt(10);
}
return randomArray;
}
public int BinarySearchPosition(int arrayOut[],int left,int right,int key){ //二分查找要替换的位置
int mid;
if (arrayOut[right]<key) {
return right+1;
}else {
while(left<right){
mid=(left+right)/2;
if (arrayOut[mid]<key) {
left=mid+1;
}else {
right=mid;
}
}
return left;
}
}
public int getLength(int[] arrayIn){ //获取最长递增子序列的长度
int position;
int len=1;
int[] arrayOut=new int[arrayIn.length+1];//arrayOut[0]没有存放数据
arrayOut[1]=arrayIn[0]; //初始化,长度为1的LIS末尾为arrayIn[0]
for (int i = 1; i < arrayIn.length; i++) {
position=BinarySearchPosition(arrayOut, 1, len, arrayIn[i]);
arrayOut[position]=arrayIn[i];
System.out.println(Arrays.toString(arrayOut));
if (len<position) {
len=position;
}
}
return len;
}
需要注意的是:上面代码中输出的arrayOut数组并不是最长递增子序列,我这里选择将其输出只是为了验证算法的执行过程。
对于求最长递减子序列,则可以直接将原数组进行“反转”操作,然后求出反转之后的数组的最长递增子序列的长度即为最长递减子序列的长度。
最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现的更多相关文章
- 一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 最长递增子序列LIS再谈
DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...
- 算法面试题 之 最长递增子序列 LIS
找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...
- 算法之动态规划(最长递增子序列——LIS)
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- POJ 1836 Alignment 最长递增子序列(LIS)的变形
大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 ...
随机推荐
- UVA11297 Census
题目 UVA11297 Census 做法 二维线段树,单点修改,矩阵查询,树套树(\(x,y\)),维护最大值最小值废话 有一点要注意的是:\(x\)树传到\(y\)树里面修改的时候,如果\(x\) ...
- 高通LCD驱动调试
本文转载自:http://www.itgo.me/a/x6305658852004979994/lcd%20qcom 来自 :http://blog.csdn.net/dacaozuo/article ...
- string 类(二)
处理string对象中的字符: 在cctype头文件中定义了一组标准库函数来处理string对象中的字符,比如检查一个string对象是否包含空白,或者把string对象中的字母改成小写,再或者查看某 ...
- freemarker内建函数介绍
Sequence的内置函数1.sequence?first 返回sequence的第一个值.2.sequence?last 返回sequence的最后一个值.3.sequence?reverse 将s ...
- 关于centos7下/etc/sysconfig/目录没有iptables问题
在新买的centos7服务器中想打开防火墙,采用传统centos6的方式用service iptables restart/stop/status 之后报错: 而在/etc/sysconfig/目录下 ...
- 【bzoj5055】膜法师(离散化+树状数组)
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=5055 这道题……不得不说,从标题到题面都能看出一股浓浓的膜法气息……苟…… 题意就是统计顺序 ...
- 关于谷歌浏览器(chrome)的一些好用的插件推荐
很多在测试时候都可以使用 第一部分: A:Adblock Plus for Google Chrome™https://chrome.google.com/webstore/detail/cfhdoj ...
- Ant入门
一.Ant介绍 Ant是Java的生成工具,是Apache的核心项目:直接在apache官网下载即可: Ant类似于Unix中的Make工具,都是用来编译.生成: Ant是跨平台的,而Make不能: ...
- PowerDesigner15生成数据库 同时自动生成字段说明(备注)信息
1.打开Database->Generate Database 2.切换到Format标签页,选中Generate name in empty comment即可生成每个字段的说明(备注)信息 ...
- c++中函数参数传递(值传递、指针传递,引用传递)进一步认识
概念 首先从概念上来说一下这几种函数传参方式及区别: 1.值传递:形参是实参的拷贝,改变函数形参的值并不会影响外部实参的值,这是最常用的一种传参方法,也是最简单的一种传参方法,只需要传递参 ...