题解:

然后就是接下来如何fwt

也就是如何处理bit(x) - bit(y) = bit(k)这个条件。

其实就是子集卷积。

把bit(x)和bit(y)划分成两个集合,然后就是子集卷积的形式。

这里设两个新的数组 A[bit(y)][y], B[bit(x)][x],代表拆出来的相应数组

然后对这两个数组做fwt,得到其点值表示,然后直接在外层枚举x和y的大小然后做卷积即可。

这样说可能很抽象,其实贴出代码就很清楚了

#include <iostream>
#include <vector>
#include <cstdio>
using namespace std;
const int MOD = ;
typedef long long LL;
LL mypow(LL a, LL b){
LL ans = ; for(; b; b >>= ) { if(b&) (ans *= a) %= MOD; (a *= a) %= MOD; } return ans;
}
LL I2 = mypow(, MOD-);
const int maxn = (<<) + ;
LL a[maxn], b[maxn], A[][maxn*], B[][maxn*], C[][maxn*];
vector<int> Bit[];
int m; class FWT{
public:
void fwt(LL *a, int n){
for(int d = ; d < n; d <<= ){
for(int m = d<<, i = ; i < n; i += m){
for(int j = ; j < d; j++){
LL x = a[i+j], y = a[i+j+d];
a[i+j] = x+y; if(a[i+j] >= MOD) a[i+j] -= MOD;
a[i+j+d] = x-y; if(a[i+j+d] < ) a[i+j+d] += MOD;
}
}
}
}
void ufwt(LL *a, int n){
for(int d = ; d < n; d <<= ){
for(int m = d<<, i = ; i < n; i += m){
for(int j = ; j < d; j++){
LL x = a[i+j], y = a[i+j+d];
a[i+j] = (x+y)*I2%MOD; a[i+j+d] = (x-y+MOD)*I2%MOD;
}
}
}
}
void work(LL *a, LL *b, int n){
fwt(a, n);
fwt(b, n);
for(int i = ; i < n; i++) a[i] *= b[i];
ufwt(a, n);
}
}myfwt; int bit(int x){
int ans = ;
for(int i = ; i < ; i++)
ans += ((x&(<<i)) > );
return ans;
} int main()
{
for(int i = ; i < (<<); i++) Bit[bit(i)].push_back(i);
cin>>m;
for(int i = ; i < (<<m); i++) scanf("%d", &a[i]);
for(int i = ; i < (<<m); i++) scanf("%d", &b[i]);
int L = (<<m);
for(int i = ; i <= m; i++){
for(auto x : Bit[i]){
if(x >= L) break;
A[i][x] = (a[x]*(<<i))%MOD;
B[i][x] = b[x];
}
myfwt.fwt(A[i], L);
myfwt.fwt(B[i], L);
}
for(int x = ; x <= m; x++)
for(int y = ; y <= x; y++)
for(int i = ; i < L; i++)
(C[x-y][i] += A[y][i]*B[x][i]) %= MOD;
for(int i = ; i <= m; i++) myfwt.ufwt(C[i], L);
LL ans = , t = ;
for(int i = ; i < (<<m); i++){
(ans += C[bit(i)][i]*t) %= MOD;
(t *= ) %= MOD;
}
cout<<ans<<endl;
return ;
}

hdu 6057 Kanade's convolution(子集卷积)的更多相关文章

  1. HDU 6057 - Kanade's convolution | 2017 Multi-University Training Contest 3

    /* HDU 6057 - Kanade's convolution [ FWT ] | 2017 Multi-University Training Contest 3 题意: 给定两个序列 A[0 ...

  2. HDU 6057 Kanade's convolution(FWT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6057 [题目大意] 有 C[k]=∑_(i&j=k)A[i^j]*B[i|j] 求 Ans ...

  3. HDU 6057 Kanade's convolution

    题目链接:HDU-6057 题意: 思路:先按照官方题解推导出下面的式子: 现在唯一的问题就是怎么解决[bit(x)-bit(y)=bit(k)]的问题. 我们定义\( F(A,k)_{i}=\lef ...

  4. @总结 - 2@ 位运算卷积/子集卷积 —— FWT/FMT

    目录 @0 - 参考资料@ @1 - 异或卷积概念及性质@ @2 - 快速沃尔什正变换(异或)@ @3 - 快速沃尔什逆变换(异或)@ @4 - 与卷积.或卷积@ @5 - 参考代码实现@ @6 - ...

  5. ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)

    ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰 ...

  6. Group Convolution分组卷积,以及Depthwise Convolution和Global Depthwise Convolution

    目录 写在前面 Convolution VS Group Convolution Group Convolution的用途 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在 ...

  7. CF914G Sum the Fibonacci FWT、子集卷积

    传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \opl ...

  8. CF 914G Sum the Fibonacci——子集卷积

    题目:http://codeforces.com/contest/914/problem/G 第一个括号可以子集卷积:第三个括号可以用 FWT 异或卷积:这样算出选两个数组成 x 的方案数:三个部分的 ...

  9. UOJ 348 【WC2018】州区划分——子集卷积

    题目:http://uoj.ac/problem/348 参考:https://www.cnblogs.com/NaVi-Awson/p/9242645.html#%E5%AD%90%E9%9B%86 ...

随机推荐

  1. mongodb的高级查询

    db的帮助文档 输入:db.help(); db.AddUser(username,password[, readOnly=false])  添加用户 db.auth(usrename,passwor ...

  2. 数据解压及if else的应用

    def sum(items): head, *tails = items return head + sum(tails) if tails else head # 最后一句有点像三目运算符,如果ta ...

  3. 电子商城实录------定义init初始化的方法

    路由方法的设置 //路由方法 private static function dispatch(){ //获取控制器名称(类比:英文单词的后缀) $controller_name=CONTROLLER ...

  4. Mysql 5.7 开启远程连接

    1 在控制台执行 mysql -uroot -p 系统提示输入数据库root用户的密码,输入完成后即进入mysql控制台 2 选择数据库 mysql -uroot -p use mysql; 开启远程 ...

  5. SpringBoot学习(1)

    springboot的自动配置功能,主要流程如下: 1 启动的时候加载我们的主配置类,也就是我们的入口类:从而开启我们的自动配置配置功能,这个是通过@EnableAutoConfiguration注解 ...

  6. linux安装python并安装pip

    因为最近要在linux环境下进行python编程,所以就试着去安装了一下,但是网上关于python以及pip的安装说实话有点混乱,所以我今天就把前辈的经验再次总结一下,希望可以给大家提供帮助. pyt ...

  7. 小米Pro 15.6 系统重装记录

    参考链接:http://bbs.xiaomi.cn/t-14321262,主要是miui论坛和小米社区的一位同学的教程,. 这位同学是针对12.5和13.3的版本做的教程,15.6和之前的版本有一小点 ...

  8. OVERLAY(文字の上書き)

    OVERLAY 命令により.文字列が別の文字列によって上書きされます. OVERLAY c1 WITH c2 [ONLY str]. この命令により.項目 c1 のすべての位置のうち.str の中に出 ...

  9. 关于cookie的一些学习笔记

    0x00 发现自己对一些原理性的东西实在是太不了解 最近看了<cookie之困>记一下笔记 0x01 因为http是无状态的 所以需要cookie和session来保持http的会话状态和 ...

  10. OpenCV代码提取:transpose函数的实现

    OpenCV中的transpose函数实现图像转置,公式为: 目前fbc_cv库中也实现了transpose函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一 ...