AGC017D Game on Tree(树型博弈)
题目大意:
给出一棵n个结点的树,以1为根,每次可以切掉除1外的任意一棵子树,最后不能切的话就为负,问是先手必胜还是后手必胜。
题解:
首先我们考虑利用SG函数解决这个问题
如果1结点有多个子节点,那么SG[1]显然就是子节点代表的子树的SG[x]异或和
所以我们就可以把子树全部拆开
问题就变成了多个树,每个树的根节点只有一个孩子
这种情况的SG[1]就等于它的孩子SG[x] + 1
证明如下
1、切掉孩子,那么SG[x] = 0,说明SG[1]大于0
2、切掉其他结点,局面变成[切掉结点的部分]加上[根节点连向孩子的一条边],也就是说当前局面的SG值必定大于[切掉结点的部分]的SG值,而SG值的定义又取最小,所以SG[1] = SG[x] + 1
然后dfs一遍就可以了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = 1e5 +;
vector<int> G[maxn];
int sg[maxn];
void dfs(int x, int fa){
sg[x] = ;
for(auto to : G[x]){
if(to == fa) continue;
dfs(to, x);
sg[x] ^= (sg[to]+);
}
} int main()
{
int n, x, y;
cin>>n;
for(int i = ; i < n; i++){
scanf("%d %d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(, );
if(sg[]) cout<<"Alice";
else cout<<"Bob";
}
AGC017D Game on Tree(树型博弈)的更多相关文章
- POJ 2486 Apple Tree ( 树型DP )
#include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...
- echarts tree 树型图层级距离设置
网上找了半天,没有找到设置层级距离的属性,默认是自动适应的,无奈只能改源码,分享出来希望可以帮到有相同需求的... 上github下载echarts源码包,打开src=>chart=>tr ...
- Codeforces 161D Distance in Tree(树型DP)
题目链接 Distance in Tree $k <= 500$ 这个条件十分重要. 设$f[i][j]$为以$i$为子树,所有后代中相对深度为$j$的结点个数. 状态转移的时候,一个结点的信息 ...
- Educational Codeforces Round 52 (Rated for Div. 2) F. Up and Down the Tree 树型DP
题面 题意:给你一棵树,你起点在1,1也是根节点,你每次可以选择去你子树的某个叶子节点,也可以选择,从叶子节点返回距离不超过k的一个根, 也就是说,你从1开始,向下跳,选择一个叶子(就是没有子树的节点 ...
- CodeForces 160D - Distance in Tree 树型DP
题目给了512MB的空间....用dp[k][i]代表以k为起点...往下面走(走直的不打岔)i步能有多少方案....在更新dp[k][i]过程中同时统计答案.. Program: #include& ...
- D. Distance in Tree(树型Dp计数)
\(其实思路都能想到一点,就是去重这里特别麻烦,没有好的思路.\) \(设dp[i][j]为以i为根深度为j的节点数量\) \(dp[parent][j]=\sum{dp[son][j-1]}\) \ ...
- 路径字符串数据转化为树型层级对象,path to json tree
由于项目中使用了react 及 ant-design ,在使用tree树型控件时,需要 类似下面的数据, const treeData = [{ title: '0-0', key: '0-0', c ...
- HDU 5905 Black White Tree(树型DP)
题目链接 Black White Tree 树型DP,设$f[i][j]$为以$i$为根的子树中大小为$j$的连通块中可以包含的最小黑点数目. $g[i][j]$为以$i$为根的子树中大小为$j$的 ...
- Mac:文件夹树型展示 tree
目标: 想要在MAC的Terminal中查看文件夹中所有文件的树型结构及文件夹.文件树统计. 安装方法: 1.brew安装 官网:http://brew.sh/ brew是Mac中安装软件的神器,一定 ...
随机推荐
- echarts重新加载动画
echarts重新加载动画 var option1 = area_right_top1.getOption();area_right_top1.clear();area_right_top1.setO ...
- C#截取两个字符串间的字符串问题
string s = "我爱北京天安门和长城"; string s1 = "北京"; string s2 = "和"; int i = s. ...
- emlog博客插件分享openSug
emlog博客插件百度搜索下拉提示框openSug.js发布上线啦: 下载:https://www.opensug.org/faq/.../opensug.emlog_v1.0.0.zip[~4KB]
- sqlite3 简单实用方法
打开数据库:sqlite3.exe test.db 显示所有表: .tables 退出 sqlite3:.quit 还有个问题,已经打开一个数据库文件了. 不知道如何在不退出命令行的情况下,更换另一个 ...
- Ubunut18.04与Windows传输文件的方式
ubunut18.04与Windows传输文件的方式 开发环境:ubuntu18.04; 虚拟机:virtual box; 操作系统:Win10_64bits/专业版 在以前使用的ubuntu12.0 ...
- python七类之字典详解
一.字典 一.关键字:dict 1.字典是唯一的键值对数据,其表现形式: dic = {键:值},字典里的键必须保证是唯一的 2.键必须是不可变的数据类型: a.故列表是不能当键的 b.所 ...
- (数据科学学习手札08)系统聚类法的Python源码实现(与Python,R自带方法进行比较)
聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括了哪些样本,而Python和R中都有直接 ...
- R语言学习笔记(十):零碎知识点(21-25)
21--assign() assign函数可以通过变量名的字符串来赋值 > assign('a', 1:3) > a [1] 1 2 3 > b <- c('a') > ...
- Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling
题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...
- 10+ Best Responsive HTML5 AngularJS Templates
http://www.responsivemiracle.com/collective/best-responsive-html5-angularjs-templates/