这题最开始是用 \(n^{4}\)的算法水过的,之后才想出的\(n^{3}\)正解。首先,\(n^{4}\) 应该是很容易想到的:设状态 \(f[i][j][k]\) 为有 \(i\) 个人,庄家为 \(j\) 号人时,第 \(k\) 个人胜出的概率。这样,只需要去掉本轮淘汰的人,加上 \(i - 1\) 个人时该人胜出的概率即可。

#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define db double
int n, m, a[maxn];
db P, f[maxn][maxn][maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
P = (db) / (db) m;
for(int i = ; i <= m; i ++) a[i] = read();
f[][][] = ;
for(int i = ; i <= n; i ++)
for(int j = ; j <= i; j ++)
for(int k = ; k <= i; k ++)
{
for(int x = ; x <= m; x ++)
{
int t = (a[x] + j - ) % i, T = t + , K = k;
if(!t) t = i;
if(t == k) continue;
if(K > t) K -= ; if(T > t) T -= ;
f[i][j][k] += P * f[i - ][T][K];
}
}
for(int i = ; i <= n; i ++)
printf("%.2lf%% ", f[n][][i] * );
return ;
}

   但是这题还有更优的做法。我们再看一看自己所设置的状态,详加思考就会发现:其实第二维是不必要的。谁做庄家实际上都是一个相对的概念,我们可以强制让\(1\) 号为庄家,这样只需要在新的环上找出原来编号为 \(k\) 的人对应的新编号 \(k'\) 并加上其概率就好啦。

#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define db double
int n, m, a[maxn];
db P, f[maxn][maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
P = (db) / (db) m;
for(int i = ; i <= m; i ++) a[i] = read();
f[][] = ;
for(int i = ; i <= n; i ++)
for(int k = ; k <= i; k ++)
for(int x = ; x <= m; x ++)
{
int t = a[x] % i, T = t + , K = k;
if(!t) t = i;
if(t == k) continue;
if(K > t) K -= ; if(T > t) T -= ;
if(K < T) K = (i - T + K);
else if(K > T) K = K - T + ;
else K = ;
f[i][k] += P * f[i - ][K];
}
for(int i = ; i <= n; i ++)
printf("%.2lf%% ", f[n][i] * );
return ;
}

【题解】JLOI2013卡牌游戏的更多相关文章

  1. [题解] [JLOI2013] 卡牌游戏

    题面 题解 概率dp, 应该做得还是比较少的 设\(f[i][j]\)为该圈有\(i\)人时, 第\(j\)个人最后胜利的概率 枚举选择第几张卡牌, 设其值为\(card[k]\), 那么被淘汰的则是 ...

  2. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  3. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  4. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  5. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

  6. 【bzoj3191】[JLOI2013]卡牌游戏 概率dp

    题目描述 n个人围成一圈玩游戏,一开始庄家是1.每次从m张卡片中随机选择1张,从庄家向下数个数为卡片上的数的人,踢出这个人,下一个人作为新的庄家.最后一个人获胜.问每个人获胜的概率. 输入 第一行包括 ...

  7. 洛谷P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  8. [JLOI2013]卡牌游戏

    [题目描述 Description] N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡 ...

  9. [bzoj3191] [JLOI2013]卡牌游戏

    概率DP. 首先由题解可得>_<,胜出概率只与剩余人数.与庄家的相对位置有关. 所以设f[i][j]表示剩下i个人,从庄家开始第j个人的胜利概率... 根据卡牌一通乱搞即可... #inc ...

  10. bzoj 3191: [JLOI2013]卡牌游戏

    Description N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X ...

随机推荐

  1. frame3.5安装出错

    一般是因为禁用了microsoft update,可以在服务里禁用改为手动,之后启动,然后就可以安装

  2. 第一次学习tornado小练习

    内容 这次是python的一个web框架,tornado,这个web框架在python的几个web框架中一个比较简单的web框架,刚开始接触python的时候就知道python有两个比较常用的web框 ...

  3. 016---Django的ModelForm

    对于forms组件虽然可以帮我们渲染html页面,也可以做校验,但是,保存到数据库要取各字段的值,还要手动保存.所以引入了一个新的组件 这是一个神奇的组件,通过名字我们可以看出来,这个组件的功能就是把 ...

  4. Python | 用Pyinstaller打包发布exe应用

    参考:https://jingyan.baidu.com/article/a378c960b47034b3282830bb.html https://ask.csdn.net/questions/72 ...

  5. AES128加密-S盒和逆S盒构造推导及代码实现

    文档引用了<密码编码学与网络安全--原理和实践>里边的推导过程,如有不妥,请与我联系修改. 文档<FIPS 197>高级加密标准AES,里边有个S盒构造,涉及到了数论和有限域的 ...

  6. C语言运算符优先级和结合性

    运算符优先级和结合性 优先级                                       运算符 结合性                                         ...

  7. win7 下安装oracle 11g出现错误: 启动服务出现错误 找不到服务OracleMTSRecoveryService

    这种错误是在多次安装oracle都没有成功的情况下发生的. 正确安装oracle,是有前提条件的 1,安装最新的jdk,不是jre!!(并配好环境变量,在cmd中测试 java -version与ja ...

  8. 【jQuery】 常用函数

    [jQuery] 常用函数 html() : 获取设置元素内的 html,包含标签 text() : 获取设置元素内的文本, 不包含标签 val() : 获取设置 value 值 attr() : 获 ...

  9. MySQL☞between ... and ...

    between  初值  and  终值:求出该列列值在初值和终值之间所有的数据 格式如下: select 列名/* from 表名 where 列名 between 初值 and 终值 如下图:

  10. 【转】ASP.NET Core 快速入门(环境篇)

    原文链接:http://www.cnblogs.com/zhaopei/p/netcore.html [申明]:本人.NET Core小白.Linux小白.MySql小白.nginx小白.而今天要说是 ...