题目描述

Byteasar, the farmer, wants to plough his rectangular field. He can begin with ploughing a slice from any of the field's edges, then he can plough a slice from any unploughed field's edges, and so on, until the whole field is ploughed. After the ploughing of every successive slice, the yet-unploughed field has a rectangular shape. Each slice has a span of 111 , and the length and width of the field are the integers nnn and mmm .

Unfortunately, Byteasar has only one puny and frail nag (horse) at his disposal for the ploughing. Once the nag starts to plough a slice, it won't stop until the slice is completely ploughed. However, if the slice is to much for the nag to bear, it will die of exhaustion, so Byteasar has to be careful. After every ploughed slice, the nag can rest and gather strength. The difficulty of certain parts of the field varies, but Byteasar is a good farmer and knows his field well, hence he knows every part's ploughing-difficulty.

Let us divide the field into m×nm\times nm×n unitary squares - these are called tiles in short.

We identify them by their coordinates (i,j)(i,j)(i,j) , for 1≤i≤m1\le i\le m1≤i≤m and 1≤j≤n1\le j\le n1≤j≤n .

Each tile has its ploughing-difficulty - a non-negative integer.

Let ti,jt_{i,j}ti,j​ denote the difficulty of the tile which coordinates are (i,j)(i,j)(i,j) .

For every slice, the sum of ploughing-difficulties of the tiles forming it up cannot exceed a certain constant kkk - lest the nag dies.

A difficult task awaits Byteasar: before ploughing each subsequent slice he has to decide which edge of the field he'll plough, so that the nag won't die. On the other hand, he'd like to plough as few slices as possible.

TaskWrite a programme that:

reads the numbers kkk , mmm and nnn from the input file, as well as the ploughing-difficulty coefficients, determines the best way to plough Byteasar's field, writes the result to the output file.

Byteasar想耕种他那块矩形的田,他每次能耕种矩形的一边(上下左右都行),在他每次耕完后,剩下的田也一定是矩形,每块小区域边长为 111 ,耕地的长宽分别为 mmm 和 nnn ,不幸的是Byteasar只有一匹老弱的马,从马开始耕地开始,只有当它耕完了一边才会停下休息。但有些地会非常难耕以至于马会非常的累,因此Byteasar需要特别小心。当耕完了一边之后,马可以停下来休息恢复体力。每块地耕种的难度不一,但是Byteasar都非常清楚。我们将地分成 m×nm\times nm×n 块单位矩形——我们用坐标 (i,j)(i,j)(i,j) 来定义它们。每块地都有一个整数 ti,jt_{i,j}ti,j​ ,来定义 (i,j)(i,j)(i,j) 的耕种难度。所以每次马耕一边地时的难度就是所有它耕种的地的难度总和,对于这匹虚弱的马而言,这个值不能超过他的体力值。Byteasar想知道在马不死掉的情况下最少需要耕多少次才能把地耕完。

输入输出格式

输入格式:

There are three positive integers in the first line of the input file: kkk , mmm and nnn ,separated by single spaces, 1≤k≤200 000 0001\le k\le 200\ 000\ 0001≤k≤200 000 000 , 1≤m,n≤20001\le m,n\le 20001≤m,n≤2000 .

In the following nnn lines there are the ploughing-difficulty coefficients.

The line no. j+1j+1j+1 contains the coefficients t1,j,t2,j...,tn,mt_{1,j},t_{2,j}...,t_{n,m}t1,j​,t2,j​...,tn,m​ , separated by single spaces, 0≤ti,j≤100 0000\le t_{i,j}\le 100\ 0000≤ti,j​≤100 000 .

输出格式:

Your programme should write one integer to the output file:
the minimum number of slices required to plough the field while
satisfying the given conditions. Since we care for animals, we guarantee
that the field can be ploughed according to the above rules. But
remember, saving the nag is up to you!

输入输出样例

输入样例#1:

12 6 4
6 0 4 8 0 5
0 4 5 4 6 0
0 5 6 5 6 0
5 4 0 0 5 4
输出样例#1:

8

说明

感谢@NaVi_Awson 提供翻译

Solution:

  大鸡哥翻译题,贼有意思。

  本题一眼的不可做,连随机化都没有去打。

  正解非常神奇的贪心。

  首先可以确定的是答案的范围:$min(n,m)\leq ans\leq n+m$(显然的)。

  然后我们可以对纵列贪心,即尽可能的删两边的纵列,不行时再删最上和最下两行,至于上下两行被删的顺序,我们可以设定一个阀值$p,\; p\in[1,n]$,表示上层删的行数不超过$p$,当达到该阀值时就直接删最下行,这样确定出的优先级是先左右后上下。同理,将优先级改为先上下后左右,尽可能的删顶底的两行。在每次枚举时更新答案就好了。

  贪心的正确性证明:首先可以确定当横纵都能删时,按先左右后上下的优先级删去纵列后不会影响横行的删去(上次横纵都能删,现在删掉纵列,显然横行还是可以删去);而若纵列能删而横行不能删,那么删去纵列,横行能删的可能性会更高;而若横能删而纵不能删,则删去横行后,要删的纵列数并不会减少,所以后面还是尽可能的删去列,这样可以确定在纵列先与横行的优先级下,删行不会使得答案更优,保持该优先级能确保横行删的次数尽可能的少,所以答案最优为$m+k_1,\; k_1\in[1,n]$。但是可能某种情况下删行时最优(比如每行每列都能删,而行数小于列数),于是确定先上下后左右的优先级后,尽可能减少删列的次数,删行的最优解为$n+k_2,\; k_2\in[1,m]$。两者取最小值就是答案了。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int k,n,m,sl[N][N],sr[N][N],a[N][N],ans=0x7fffffff; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} il void solve(){
int ln,rn,lm,rm,tot,sum;
For(p,,m){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k&&lm<p){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
For(p,,n){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k&&ln<p){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
} int main(){
k=gi(),m=gi(),n=gi();
For(i,,n) For(j,,m) a[i][j]=gi(),sl[i][j]=sl[i][j-]+a[i][j];
For(i,,m) For(j,,n) sr[i][j]=sr[i][j-]+a[j][i];
solve();
cout<<ans;
return ;
}

P3444 [POI2006]ORK-Ploughing的更多相关文章

  1. [洛谷P3444] [POI2006]ORK-Ploughing

    洛谷题目链接[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He ca ...

  2. 洛谷P3444 [POI2006]ORK-Ploughing [枚举,贪心]

    题目传送门 ork 格式难调,题面就不放了. 分析: 一道偏难的贪心和枚举题.考试的时候是弃疗了...yyb巨佬已经讲的很详细了,推荐他的博客.这里小蒟蒻就只放代码了. Code: #include& ...

  3. [POI2006]ORK-Ploughing(贪心,枚举)

    [POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He can begi ...

  4. 【BZOJ】【1520】【POI2006】Szk-Schools

    网络流/费用流 比较裸的一道题 依旧是二分图模型,由源点S连向每个学校 i (1,0),「注意是连向第 i 所学校,不是连向学校的标号m[i]……唉这里WA了一次」 然后对于每所学校 i 连接 j+n ...

  5. BZOJ1510: [POI2006]Kra-The Disks

    1510: [POI2006]Kra-The Disks Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 265  Solved: 157[Submit][ ...

  6. bzoj 1513 [POI2006]Tet-Tetris 3D(二维线段树)

    1513: [POI2006]Tet-Tetris 3D Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 540  Solved: 175[Submit ...

  7. BZOJ1524: [POI2006]Pal

    1524: [POI2006]Pal Time Limit: 5 Sec  Memory Limit: 357 MBSubmit: 308  Solved: 101[Submit][Status] D ...

  8. BZOJ1511: [POI2006]OKR-Periods of Words

    1511: [POI2006]OKR-Periods of Words Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 174  Solved: 92[Su ...

  9. Poi2006 Palindromes

    2780: Poi2006 Palindromes Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 15  Solved: 5[Submit][Stat ...

随机推荐

  1. 解决每次运行Xcode,都需要输入密码的问题

    新买的Mac,在安装了 Xcode 7.1的时候,不知道是配置信息哪里手残了一下,导致每次运行Xcode模拟器 后 都需要输入一次密码. 为此在网上也是查阅了不少的资料,当时 所谓的 XCode--- ...

  2. flutter开发之配置环境以及一些问题的处理方案~

        今天flutter1.0已经发布了,有没有一点小小的兴奋,为了纪念这个令人激动的日子,我决定发一篇flutter的基本环境搭建的教程送给大家:) 由于这是一篇关于flutter配置环境的教程, ...

  3. GET POST 请求的详细区别

    前言: 作为最常见的请求方式 在面试很有可能会被问到 所以在这里做一个简单总结 GET get方法向页面请求发送参数 地址和参数之间用?进行分割 例如 localhost:80/download.ht ...

  4. C# WebClient 使用http免费代理

    static void Main(string[] args) { WebClient client = new WebClient(); client.Encoding = Encoding.Get ...

  5. Excel VBA表格自行开发计划

    Excel VBA表格自行开发计划 要求功能 1. 批量删除 2. [X] 批量填充 3. [X] 批量重命名 4. [ ] 按颜色求和 5. [ ] 按底纹色选中单元格 6. [ ] 统计底纹颜色个 ...

  6. 3.2 进程间通信之fifo

    一.引言 FIFO常被称为有名管道,不同于管道(pipe).pipe仅适用于“有血缘关系”的IPC.但FIFO还可以应用于不相关的进程的IPC.实际上,FIFO是Linux基础文件类型中的一种,是在读 ...

  7. scrapy爬取伯乐在线文章数据

    创建项目 切换到ArticleSpider目录下创建爬虫文件 设置settings.py爬虫协议为False 编写启动爬虫文件main.py

  8. C# 设置程序最小化到任务栏右下角,鼠标左键单击还原,右键提示关闭程序

    首先设置程序最小化到任务栏右下角 先给窗口添加一个notifyIcon控件 为notifyIcon控件设置ICO图标(不设置图标将无法在任务栏显示) 给notifyIcon控件添加点击事件 然后是最小 ...

  9. AVL重平衡细节——插入

    话说这个系列鸽了好久,之前在准备语言考试,就没管博客了,现在暑假咱们继续上路! 每当我们进行一次插入之后,整棵AVL树的平衡性就有可能发生改变,为了控制整棵树的高度,我们需要通过一系列变换(重平衡)来 ...

  10. 一步一步学Linq to sql(六):探究特性

    延迟执行 IQueryable query = from c in ctx.Customers select c; 这样的查询句法不会导致语句立即执行,它仅仅是一个描述,对应一个SQL.仅仅在需要使用 ...