P3444 [POI2006]ORK-Ploughing
题目描述
Byteasar, the farmer, wants to plough his rectangular field. He can begin with ploughing a slice from any of the field's edges, then he can plough a slice from any unploughed field's edges, and so on, until the whole field is ploughed. After the ploughing of every successive slice, the yet-unploughed field has a rectangular shape. Each slice has a span of 111 , and the length and width of the field are the integers nnn and mmm .
Unfortunately, Byteasar has only one puny and frail nag (horse) at his disposal for the ploughing. Once the nag starts to plough a slice, it won't stop until the slice is completely ploughed. However, if the slice is to much for the nag to bear, it will die of exhaustion, so Byteasar has to be careful. After every ploughed slice, the nag can rest and gather strength. The difficulty of certain parts of the field varies, but Byteasar is a good farmer and knows his field well, hence he knows every part's ploughing-difficulty.
Let us divide the field into m×nm\times nm×n unitary squares - these are called tiles in short.
We identify them by their coordinates (i,j)(i,j)(i,j) , for 1≤i≤m1\le i\le m1≤i≤m and 1≤j≤n1\le j\le n1≤j≤n .
Each tile has its ploughing-difficulty - a non-negative integer.
Let ti,jt_{i,j}ti,j denote the difficulty of the tile which coordinates are (i,j)(i,j)(i,j) .
For every slice, the sum of ploughing-difficulties of the tiles forming it up cannot exceed a certain constant kkk - lest the nag dies.
A difficult task awaits Byteasar: before ploughing each subsequent slice he has to decide which edge of the field he'll plough, so that the nag won't die. On the other hand, he'd like to plough as few slices as possible.
TaskWrite a programme that:
reads the numbers kkk , mmm and nnn from the input file, as well as the ploughing-difficulty coefficients, determines the best way to plough Byteasar's field, writes the result to the output file.
Byteasar想耕种他那块矩形的田,他每次能耕种矩形的一边(上下左右都行),在他每次耕完后,剩下的田也一定是矩形,每块小区域边长为 111 ,耕地的长宽分别为 mmm 和 nnn ,不幸的是Byteasar只有一匹老弱的马,从马开始耕地开始,只有当它耕完了一边才会停下休息。但有些地会非常难耕以至于马会非常的累,因此Byteasar需要特别小心。当耕完了一边之后,马可以停下来休息恢复体力。每块地耕种的难度不一,但是Byteasar都非常清楚。我们将地分成 m×nm\times nm×n 块单位矩形——我们用坐标 (i,j)(i,j)(i,j) 来定义它们。每块地都有一个整数 ti,jt_{i,j}ti,j ,来定义 (i,j)(i,j)(i,j) 的耕种难度。所以每次马耕一边地时的难度就是所有它耕种的地的难度总和,对于这匹虚弱的马而言,这个值不能超过他的体力值。Byteasar想知道在马不死掉的情况下最少需要耕多少次才能把地耕完。
输入输出格式
输入格式:
There are three positive integers in the first line of the input file: kkk , mmm and nnn ,separated by single spaces, 1≤k≤200 000 0001\le k\le 200\ 000\ 0001≤k≤200 000 000 , 1≤m,n≤20001\le m,n\le 20001≤m,n≤2000 .
In the following nnn lines there are the ploughing-difficulty coefficients.
The line no. j+1j+1j+1 contains the coefficients t1,j,t2,j...,tn,mt_{1,j},t_{2,j}...,t_{n,m}t1,j,t2,j...,tn,m , separated by single spaces, 0≤ti,j≤100 0000\le t_{i,j}\le 100\ 0000≤ti,j≤100 000 .
输出格式:
Your programme should write one integer to the output file:
the minimum number of slices required to plough the field while
satisfying the given conditions. Since we care for animals, we guarantee
that the field can be ploughed according to the above rules. But
remember, saving the nag is up to you!
输入输出样例
12 6 4
6 0 4 8 0 5
0 4 5 4 6 0
0 5 6 5 6 0
5 4 0 0 5 4
8
说明
感谢@NaVi_Awson 提供翻译
Solution:
大鸡哥翻译题,贼有意思。
本题一眼的不可做,连随机化都没有去打。
正解非常神奇的贪心。
首先可以确定的是答案的范围:$min(n,m)\leq ans\leq n+m$(显然的)。
然后我们可以对纵列贪心,即尽可能的删两边的纵列,不行时再删最上和最下两行,至于上下两行被删的顺序,我们可以设定一个阀值$p,\; p\in[1,n]$,表示上层删的行数不超过$p$,当达到该阀值时就直接删最下行,这样确定出的优先级是先左右后上下。同理,将优先级改为先上下后左右,尽可能的删顶底的两行。在每次枚举时更新答案就好了。
贪心的正确性证明:首先可以确定当横纵都能删时,按先左右后上下的优先级删去纵列后不会影响横行的删去(上次横纵都能删,现在删掉纵列,显然横行还是可以删去);而若纵列能删而横行不能删,那么删去纵列,横行能删的可能性会更高;而若横能删而纵不能删,则删去横行后,要删的纵列数并不会减少,所以后面还是尽可能的删去列,这样可以确定在纵列先与横行的优先级下,删行不会使得答案更优,保持该优先级能确保横行删的次数尽可能的少,所以答案最优为$m+k_1,\; k_1\in[1,n]$。但是可能某种情况下删行时最优(比如每行每列都能删,而行数小于列数),于是确定先上下后左右的优先级后,尽可能减少删列的次数,删行的最优解为$n+k_2,\; k_2\in[1,m]$。两者取最小值就是答案了。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int k,n,m,sl[N][N],sr[N][N],a[N][N],ans=0x7fffffff; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} il void solve(){
int ln,rn,lm,rm,tot,sum;
For(p,,m){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k&&lm<p){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
For(p,,n){
ln=,rn=n,lm=,rm=m,tot=;
while(ln<=rn&&lm<=rm){
tot++;
sum=sr[lm][rn]-sr[lm][ln-];
if(sum<=k){lm++;continue;}
sum=sr[rm][rn]-sr[rm][ln-];
if(sum<=k){rm--;continue;}
sum=sl[ln][rm]-sl[ln][lm-];
if(sum<=k&&ln<p){ln++;continue;}
sum=sl[rn][rm]-sl[rn][lm-];
if(sum<=k){rn--;continue;}
tot=0x7fffffff;break;
}
ans=min(ans,tot);
}
} int main(){
k=gi(),m=gi(),n=gi();
For(i,,n) For(j,,m) a[i][j]=gi(),sl[i][j]=sl[i][j-]+a[i][j];
For(i,,m) For(j,,n) sr[i][j]=sr[i][j-]+a[j][i];
solve();
cout<<ans;
return ;
}
P3444 [POI2006]ORK-Ploughing的更多相关文章
- [洛谷P3444] [POI2006]ORK-Ploughing
洛谷题目链接[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He ca ...
- 洛谷P3444 [POI2006]ORK-Ploughing [枚举,贪心]
题目传送门 ork 格式难调,题面就不放了. 分析: 一道偏难的贪心和枚举题.考试的时候是弃疗了...yyb巨佬已经讲的很详细了,推荐他的博客.这里小蒟蒻就只放代码了. Code: #include& ...
- [POI2006]ORK-Ploughing(贪心,枚举)
[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He can begi ...
- 【BZOJ】【1520】【POI2006】Szk-Schools
网络流/费用流 比较裸的一道题 依旧是二分图模型,由源点S连向每个学校 i (1,0),「注意是连向第 i 所学校,不是连向学校的标号m[i]……唉这里WA了一次」 然后对于每所学校 i 连接 j+n ...
- BZOJ1510: [POI2006]Kra-The Disks
1510: [POI2006]Kra-The Disks Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 265 Solved: 157[Submit][ ...
- bzoj 1513 [POI2006]Tet-Tetris 3D(二维线段树)
1513: [POI2006]Tet-Tetris 3D Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 540 Solved: 175[Submit ...
- BZOJ1524: [POI2006]Pal
1524: [POI2006]Pal Time Limit: 5 Sec Memory Limit: 357 MBSubmit: 308 Solved: 101[Submit][Status] D ...
- BZOJ1511: [POI2006]OKR-Periods of Words
1511: [POI2006]OKR-Periods of Words Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 174 Solved: 92[Su ...
- Poi2006 Palindromes
2780: Poi2006 Palindromes Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 15 Solved: 5[Submit][Stat ...
随机推荐
- vue $set修改数组
看了别人写的,自己简单写一下自己的理解. 因为 JavaScript 的限制,Vue.js 不能检测到下面数组变化,所以,想要正常是不能通过操作数组来渲染dom的,解决的方法是通过set方法, 在组件 ...
- PHP学习课程和培训方向学习路线分享
php语言的优越性,集结了很多的开发爱好者,无论行业前景和个人发展来说,php正飞速的发展,php在不断兼容着类似closures和命名空间 等技术,同时兼顾性能和当下流行的框架.版本是7之后,一直在 ...
- lnmp+phpmyadmin+laravel 环境配置
腾讯云 Ubuntu16.04 添加用户 useradd 与 adduser Ubuntu下useradd不会在/home下自动创建与用户名同名的用户目录,而且不会自动选择shell版本,也没有设置密 ...
- 做 JAVA 开发,怎能不用 IDEA!
用了 IDEA,感觉不错.决定弃用 Eclipse 入门教程: www.cnblogs.com/yangyquin/p/5285272.html
- MongoDB在单机上搭建分片副本集群(windows)
------------------------------1.安装MongoDB...... ------------------------------2.准备好文件夹 --config:配置文件 ...
- PrestaShop 网站漏洞修复如何修复
PrestaShop网站的漏洞越来越多,该网站系统是很多外贸网站在使用的一个开源系统,从之前的1.0初始版本到现在的1.7版本,经历了多次的升级,系统使用的人也越来越多,国内使用该系统的外贸公司也很多 ...
- 分布式系统的CAP(Redis)
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点.而由于当前的网络硬件肯定会出现延迟丢包等问题,所以 分区容忍性是我们必须需要实现的. 所以我们只能在一致性和可用性之间进行权衡,没有NoSQ ...
- Kubernetes-tutorials(五)
The tutorials use Katacoda to run a virtual terminal in your web browser that runs Minikube, a small ...
- 【Leetcode】605. Can Place Flowers
Description Suppose you have a long flowerbed in which some of the plots are planted and some are no ...
- ES6--Set之再理解
Set 其实2016年就看过阮大神的ECMAScript 6 入门,当时看了Set之后,大致看懂了,但事实上根本没有理解Set到底是什么,所以更记不住,平时做项目大多用到的还是ES5的传统写法,以至于 ...