[洛谷P3803] 【模板】多项式乘法(FFT, NTT)
题目大意:$FFT$,给你两个多项式,请输出乘起来后的多项式。
题解:$FFT$,由于给的$n$不是很大,也可以用$NTT$做
卡点:无
C++ Code:
FFT:
#include <cstdio>
#include <cmath>
using namespace std;
const double Pi = acos(-1);
int n, m;
struct complex {
double r, i;
complex (double a = 0, double b = 0) {r = a, i = b;}
complex operator + (complex a) {return (complex) {r + a.r, i + a.i};}
complex operator - (complex a) {return (complex) {r - a.r, i - a.i};}
complex operator /= (int a) {r /= a, i /= a;}
complex operator * (complex a) {return (complex) {r * a.r - i * a.i, r * a.i + i * a.r};}
} a[500000], b[500000];
int rev[500000], dig, l;
void swap(complex &a, complex &b) {complex t = a; a = b; b = t;}
void FFT(complex *a, int op) {
for (int i = 0; i < l; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int mid = 1; mid < l; mid <<= 1 ) {
complex Wn(cos(Pi / mid), op * sin(Pi / mid));
for (int i = 0; i < l; i += (mid << 1)) {
complex W(1, 0);
for (int j = 0; j < mid; j++, W = W * Wn) {
complex X = a[i + j], Y = W * a[i + j + mid];
a[i + j] = X + Y;
a[i + j + mid] = X - Y;
}
}
}
if (op == -1) for (int i = 0; i <= l; i++) a[i] /= l;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 0; i <= n; i++) scanf("%lf", &a[i].r);
for (int i = 0; i <= m; i++) scanf("%lf", &b[i].r);
l = 1; while (l <= (n + m)) l <<= 1, dig++;
for (int i = 0; i < l; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (dig - 1));
FFT(a, 1), FFT(b, 1);
for (int i = 0; i < l; i++) a[i] = a[i] * b[i];
FFT(a, -1);
for (int i = 0; i <= n + m; i++) printf("%d ", int(a[i].r + 0.5));
return 0;
}
NTT:
#include <cstdio>
#define int long long
using namespace std;
const int maxn = 2100010;
const int mod = 998244353;
const int P = 3, invP = 332748118;
int n, m;
int a[maxn], b[maxn], rev[maxn], l, dig;
int Inv[2040826], invl;
inline void swap(int &a, int &b) {a ^= b ^= a ^= b;}
int inv(int i) {
if (i < 2040826) {
if (Inv[i]) return Inv[i];
return (Inv[i] = inv(mod % i) * (mod - mod / i) % mod);
}else return inv(mod % i) * (mod - mod / i) % mod;
}
inline int pw(int base, int p) {
int ans = 1;
for (p <<= 1; p >>= 1; (base *= base) %= mod) if (p & 1) (ans *= base) %= mod;
return ans;
}
void NTT(int *a, int op) {
int Yx;
if (op == 1) Yx = P; else Yx = invP;
for (int i = 0; i < l; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int mid = 1; mid < l; mid <<= 1) {
int Wn = pw(Yx, (mod - 1) / (mid << 1));
for (int i = 0; i < l; i += (mid << 1)) {
int W = 1;
for (int j = 0; j < mid; j++, W = W * Wn % mod) {
int X = a[i + j], Y = W * a[i + j + mid] % mod;
a[i + j] = (X + Y) % mod;
a[i + j + mid] = (X - Y + mod) % mod;
}
}
}
if (op == -1) for (int i = 0; i < l; i++) a[i] = (a[i] * invl) % mod;
}
signed main() {
Inv[0] = Inv[1] = 1;
scanf("%lld%lld", &n, &m);
for (int i = 0; i <= n; i++) scanf("%lld", &a[i]);
for (int i = 0; i <= m; i++) scanf("%lld", &b[i]);
l = 1; while (l <= n + m) l <<= 1, dig++; invl = inv(l);
for (int i = 1; i < l; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (dig - 1));
NTT(a, 1), NTT(b, 1);
for (int i = 0; i < l; i++) (a[i] *= b[i]) %= mod;
NTT(a, -1);
for (int i = 0; i <= n + m; i++) printf("%lld ", a[i]);
return 0;
}
[洛谷P3803] 【模板】多项式乘法(FFT, NTT)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷p3803 FFT入门
洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...
- 【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...
随机推荐
- 用友二次开发之科脉TOT3凭证接口
按客户的要求,根据科脉导出的数据,开发一个工具,将凭证导入T3 这个科目导出的凭证格式. 选择账套登陆,你没看错,这个是我开发的登陆界面. 选择接口文件. 软件自动进数据分类,你可以看到数据了.但只是 ...
- sorted() ,filter() ,map()的用法
sorted() 排序函数. 语法: sorted(Iterable, key=None, reverse=False) Iterable: 可迭代对象 key: 排序规则(排序函数), 在sorte ...
- Django自带后台使用配置
参考官网地址:https://docs.djangoproject.com/en/1.11/ref/contrib/admin/ ,本文章值是介绍简单配置,如果需要详细内容可以查阅官方文档 自动管理界 ...
- python中string,time,datetime三者之间的转化
这里time特指import time中的对象,datetime 特指from datetime import datetime中的对象,string指python自带的字符数据类型. 从使用的情况来 ...
- Ubuntu14.04安装opencv2.4.13
本文参考相关链接:http://blog.csdn.net/honyniu/article/details/46390097 系 统:Ubuntu 14.04 x64 opencv版本:2.4.1 ...
- 笔记-python-常见特殊变量
笔记-python-常见特殊变量 类似__xx,以双下划线开头的实例变量名,就变成了一个私有变量(private),只有内部可以访问,外部不能访问: 类似__xx__,以双下划线开头,并且以双下划线结 ...
- maven之package与install的区别
mvn clean package 先看命令的执行过程 mvn clean install 同样先看执行过程 mvn clean package依次执行了clean.resources.compile ...
- Android开发——Google关于Application Not Responding的建议
秒内没有执行完毕. 2. 避免ANR的一些建议 Android applications normally run entirely on asingle (i.e. main) thre ...
- MyEclipse10安装checkStyle与findBugs插件--详细完美结局-费元星
本人QQ:971751392(屌丝一枚) Myeclipse10安装checkStyle与findBugs插件详细完美结局方案: 资源一: http://download.csdn.net/detai ...
- How to set pycharm configure for remoting development
配置pycharm远程连接,点击pycharm的tools,选择deployment选项,选择configuration. 2 点击左侧的加号按钮,新增一个连接,取个名字,根据个人配置选择协议,这里选 ...