【bzoj2956】模积和 数论
题目描述
输入
第一行两个数n,m。
输出
一个整数表示答案mod 19940417的值
样例输入
3 4
样例输出
1
题解
数论+分块
由于直接求i≠j的情况比较难搞,所以我们可以先求出i可以等于j的和,然后再减去i等于j时的情况。
也就是求∑∑((n mod i)*(m mod j))-∑((n mod i)*(m mod i))。
然后再根据乘法分配律转化为∑(n mod i)*∑(m mod i)-∑((n mod i)*(m mod i))。
因为有n mod i = n-(n/i)*i(这里的除号均表示向下取整)。
所以∑(n mod i) = ∑(n-(n/i)*i) = n*n-∑((n/i)*i)。
这里n/i最多只有√n 种取值,我们可以分块来求,这里用到1,2,3,...,n的和。
后面一坨变为∑((n-(n/i)*i)*(m-(m/i)*i))=∑(nm-m*(n/i)*i-n/(m/i)*i+(n/i)*(m/i)*i^2)。
同样的方法处理,运用一下1^2,2^2,3^2,...,n^2的和。
最后减一下即可。
然而有一个问题,就是套用公式的时候需要除法,不能先取模,而不先取模还会爆long long。
好在除的数是固定的2和6,于是可以直接把mod开大6倍,最后再模回去即可。
#include <cstdio>
#include <algorithm>
#define MOD 119642502
using namespace std;
typedef long long ll;
ll sum1(ll p)
{
return p * (p + 1) % MOD / 2;
}
ll sum2(ll p)
{
return p * (p + 1) % MOD * (2 * p + 1) % MOD / 6;
}
ll calc1(ll n)
{
ll ans = n * n % MOD , i , last = 0;
for(i = 1 ; i <= n ; i = last + 1)
{
last = n / (n / i);
ans = (ans - (n / i) % MOD * (sum1(last) - sum1(i - 1) + MOD) % MOD + MOD) % MOD;
}
return ans;
}
ll calc2(ll n , ll m)
{
ll ans = n * m % MOD * min(n , m) % MOD , i , last = 0;
for(i = 1 ; i <= n && i <= m ; i = last + 1)
{
last = min(n / (n / i) , m / (m / i));
ans = (ans - m * (n / i) % MOD * (sum1(last) - sum1(i - 1) + MOD) % MOD
- n * (m / i) % MOD * (sum1(last) - sum1(i - 1) + MOD) % MOD
+ (n / i) * (m / i) % MOD * (sum2(last) - sum2(i - 1) + MOD) % MOD + 2 * MOD) % MOD;
}
return ans;
}
int main()
{
ll n , m;
scanf("%lld%lld" , &n , &m);
printf("%lld\n" , (calc1(n) * calc1(m) % MOD - calc2(n , m) + MOD) % (MOD / 6));
return 0;
}
【bzoj2956】模积和 数论的更多相关文章
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- 【数论分块】bzoj2956: 模积和
数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...
- bzoj2956: 模积和(数论)
先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<i ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- BZOJ2956: 模积和
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- BZOJ2956: 模积和——整除分块
题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...
- bzoj 2956: 模积和 ——数论
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 【BZOJ2956】模积和 分块
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
随机推荐
- mysql 排名
一.sql1{不管数据相同与否,排名依次排序(1,2,3,4,5,6,7.....)} SELECT obj. AS rownum FROM ( SELECT user_id, score FROM ...
- Configuration Alias
第一个里程碑 ---- 查看系统别名 [root@xilong ~]# alias alias cp='cp -i' alias egrep='egrep --color=auto' alias fg ...
- jQuery-qrcode.js 生成带Logo 的二维码
引入文件 jQuery-qrcode.js 地址:https://blog-static.cnblogs.com/files/kitty-blog/jquery-qrcode.js https:// ...
- xml的schema约束(Java)
1.schema约束 *dtd语法:<!ELEMENT 元素名称 约束> schema符合xml的语法,是xml语句. 一个xml文件中可以有多个schema,多个schema使用名称空间 ...
- CP-ABE ToolKit 安装笔记
博主论文狗,好久没有来贴博客,最近做实验需要用到属性加密,了解了下CP-ABE,前来记录一下: 网上相关的博文较多,博主看了大部分的,认为下面这两个看完了基本就可以成功安装. 可参见博文: http: ...
- Hadoop(23)-Yarn资源调度器
Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序 1. Yarn工作机制 机制详解 第1 ...
- sqlite3 简单实用方法
打开数据库:sqlite3.exe test.db 显示所有表: .tables 退出 sqlite3:.quit 还有个问题,已经打开一个数据库文件了. 不知道如何在不退出命令行的情况下,更换另一个 ...
- ruby 数据类型Number
Ruby支持的数据类型包括基本的Number.String.Ranges.Symbols,以及true.false和nil这几个特殊值,同时还有两种重要的数据结构——Array和Hash 数值类型(N ...
- Vijos 纸牌
题目网址 https://vijos.org/d/Randle/p/5a0011e1d3d8a10a532d6d71 题目描述 在桌面上放着n张纸牌,每张纸牌有两面,每面都写着一个非负整数.你的邪王真 ...
- AHOI2018 (暨HNOI2018)编外滚粗记
Day0: 向老师打了声报告就偷偷摸摸溜出了学校……感谢门卫师傅没把我当贼抓起来 车上背了一遍FFT,SAM的板子.嘴巴ac了两道CC水题.离线刷了一波知乎. 酒店好评. Day1: 不知不觉就开考了 ...