题意

一个\(r\times c\)的棋盘,棋盘上有\(n\)个标记点,每个点有三种类型,类型\(1\)可以传送到本行任意标记点,类型\(2\)可以传送到本列任意标记点,类型\(3\)可以传送到周围八连通任意标记点。求最长路径。

\(r,c\leq 10^6,n\leq 10^5\)

题解

这题做法很多,我就把每一行的所有类型\(1\)门缩到一起(直接找一个代表),列也同理,然后暴力连边,类型\(3\)连边用\(\text{map}\),这样每个点的入边中类型\(1\)或\(2\)最多有\(1\)条,类型\(3\)最多\(8\)条,大概可以说明边数和点数同阶,于是\(\text{Tarjan}\)缩点然后\(dp\)求最长路...

#include <algorithm>
#include <utility>
#include <cstdio>
#include <vector>
#include <stack>
#include <map>
using namespace std; const int N = 1e5 + 10;
const int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};
const int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; struct node {
int x, y, z, sz;
} a[N];
int n, r, c, f[N], rt[2][N * 10], dT[N];
vector<int> ob[2][N * 10], G[N], T[N];
map<pair<int, int>, int> ma;
bool isr[N]; int dfn[N], low[N], sz[N], bel[N], scc;
stack<int> st;
bool ins[N]; void tarjan(int u) {
low[u] = dfn[u] = ++ dfn[0];
st.push(u); ins[u] = 1;
for(int i = 0; i < G[u].size(); i ++) {
int v = G[u][i];
if(!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if(ins[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u]) {
scc ++;
while(1) {
int v = st.top(); st.pop();
ins[v] = 0; bel[v] = scc;
sz[scc] += a[v].sz;
if(u == v) break ;
}
}
} int pa[N];
int solve(int u) {
if(pa[u]) return pa[u];
for(int i = 0; i < T[u].size(); i ++) {
pa[u] = max(pa[u], solve(T[u][i]));
}
pa[u] += sz[u];
return pa[u];
} int main() {
scanf("%d%d%d", &n, &r, &c);
for(int i = 1; i <= n; i ++) {
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z);
ma[make_pair(a[i].x, a[i].y)] = i;
ob[0][a[i].x].push_back(i);
ob[1][a[i].y].push_back(i);
a[i].sz = 0;
}
for(int i = 1; i <= n; i ++) {
if(a[i].z == 1) {
int &u = rt[0][a[i].x];
if(!u) u = i;
a[u].sz ++; f[i] = u;
}
if(a[i].z == 2) {
int &u = rt[1][a[i].y];
if(!u) u = i;
a[u].sz ++; f[i] = u;
}
if(a[i].z == 3) {
f[i] = i;
a[i].sz ++;
}
isr[f[i]] = 1;
}
for(int i = 1; i <= n; i ++)
if(isr[i]) {
if(a[i].z == 1) {
for(int j = 0; j < ob[0][a[i].x].size(); j ++) {
int v = ob[0][a[i].x][j];
G[i].push_back(f[v]);
}
}
if(a[i].z == 2) {
for(int j = 0; j < ob[1][a[i].y].size(); j ++) {
int v = ob[1][a[i].y][j];
G[i].push_back(f[v]);
}
}
if(a[i].z == 3) {
for(int j = 0; j < 8; j ++) {
int v = ma[make_pair(a[i].x + dx[j], a[i].y + dy[j])];
if(v) {
G[i].push_back(f[v]);
}
}
}
}
for(int i = 1; i <= n; i ++)
if(isr[i] && !dfn[i]) {
tarjan(i);
}
for(int i = 1; i <= n; i ++) {
if(isr[i]) {
for(int j = 0; j < G[i].size(); j ++) {
int v = G[i][j];
if(bel[i] != bel[v]) {
T[bel[i]].push_back(bel[v]);
dT[bel[v]] ++;
}
}
}
}
int ans = 0;
for(int i = 1; i <= scc; i ++)
if(!dT[i]) {
ans = max(ans, solve(i));
}
printf("%d\n", ans);
return 0;
}

「BZOJ 1924」「SDOI 2010」所驼门王的宝藏「Tarjan」的更多相关文章

  1. BZOJ 1924: [Sdoi2010]所驼门王的宝藏 【tarjan】

    Description 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先 知”的Alpaca L. Sotomon 是这个家族的领袖,外人也称其为“所驼门王”.所 驼门王毕生致力于维 ...

  2. 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)

    「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...

  3. [BZOJ 1924][Sdoi2010]所驼门王的宝藏

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1285  Solved: 574[Submit][Sta ...

  4. 「模拟8.18」字符串(卡特兰数)·乌鸦喝水(树状数组,二分)·所驼门王的宝藏(tarjan,拓扑)

    最近好颓啊,所以啥都做不出来 简单说一下这次考试,分机房了,还分不同考卷,果然我还是留在二机房的蒟蒻, 大概也只有这样的简单题,才能勉强水个rank 3吧........ 其实不必管在哪个机房,努力便 ...

  5. bzoj 1924 [Sdoi2010]所驼门王的宝藏(构图,SCC,DP)

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  6. 【刷题】BZOJ 1924 [Sdoi2010]所驼门王的宝藏

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  7. BZOJ 1924 所驼门王的宝藏(强连通分量缩点+DAG最长链)

    思路不是很难,因为宝藏只会在给出的n个点内有,于是只需要在这n个点里面连边,一个点如果能到达另一个点则连一条有向边, 这样用强连通分量缩点后答案就是DAG的最长链. 问题在于暴力建图是O(n^2)的, ...

  8. BZOJ 1924 && Luogu P2403 [SDOI2010]所驼门王的宝藏 恶心建图+缩点DP

    记住:map一定要这么用: if(mp[x[i]+dx[j]].find(y[i]+dy[j])!=mp[x[i]+dx[j]].end()) add(i,mp[x[i]+dx[j]][y[i]+dy ...

  9. 所驼门王的宝藏(bzoj 1924)

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

随机推荐

  1. FusionCharts simple demo for (html+js、APS.NET Webform、MVC)

    做GIS或其他内部数据统计项目的应该对FusionCharts也不会太陌生,简单易用已无需多说什么了,只是有时候框架不同,实现起来也稍有差异 引用dll调用FusionCharts类的静态方法Rend ...

  2. openGL 变换06

    变换 使用(多个)矩阵(Matrix) 对象可以更好的变换(Transform)一个物体. 向量 向量最基本的定义就是一个方向. 或者说 向量有一个方向(Direction)和大小(Magnitude ...

  3. JavaScript 18岁生日快乐

    12月4日是JS的18岁生日,18年前这个日子JavaScript由Netscape和Sun联合宣布推出.那个星期,Ruby也将推出其第一个版本. 今天Netscape和Sun都已经不在了,但是JS还 ...

  4. 设置VMware Player中的虚拟机和宿主机共享文件

    设置VMware Player中的虚拟机和宿主机共享文件 试验环境: 虚拟机软件:VMware Player 6.0.3 宿主机os:windows7 虚拟机os:centos6.6(32位)   完 ...

  5. 数据库与vs的连接

    新建一个MFC基于对话框的项目后,更改属性, 其中需要将include(里面都是MySQL的头文件)lib是库文件,将.dll放入与.exe同级目录下,或放入系统里(c:\windows\system ...

  6. svn之merge

    [svn之merge] 1. merge SOURCE[@REV] [TARGET_WCPATH]  (the 'sync' merge) This form is called a 'sync' ( ...

  7. C#获取访问者ip和获取本机ip地址

    获取访问者ip: string userIP; // HttpRequest Request = HttpContext.Current.Request; HttpRequest Request = ...

  8. Tarjan的LCA离线算法

    LCA(Least Common Ancestors)是指树结构中两个结点的最低的公共祖先.而LCA算法则是用于求两个结点的LCA.当只需要求一对结点的LCA时,我们很容易可以利用递归算法在O(n)的 ...

  9. ZOJ3954 Seven-Segment Display

    题意: emmmm见原题吧 分析: 这也是当时省赛选拔的题,场上以为是大模拟,然后没敢写...补题发现是道水题··· 因为每一列的顺序不一定,但是行是一定的.所以只要把每一列组成一个数字,然后弄两个集 ...

  10. ubuntu18.04 按住只能删除一个字符bug

    只需要打开重复按键就可以了