A Walk Through the Forest

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6935    Accepted Submission(s): 2548

Problem Description
Jimmy experiences a lot of stress at work these days, especially since his accident made working difficult. To relax after a hard day, he likes to walk home. To make things even nicer, his office is on one side of a forest, and his house is on the other. A nice walk through the forest, seeing the birds and chipmunks is quite enjoyable. 
The forest is beautiful, and Jimmy wants to take a different route everyday. He also wants to get home before dark, so he always takes a path to make progress towards his house. He considers taking a path from A to B to be progress if there exists a route from B to his home that is shorter than any possible route from A. Calculate how many different routes through the forest Jimmy might take. 
 
Input
Input contains several test cases followed by a line containing 0. Jimmy has numbered each intersection or joining of paths starting with 1. His office is numbered 1, and his house is numbered 2. The first line of each test case gives the number of intersections N, 1 < N ≤ 1000, and the number of paths M. The following M lines each contain a pair of intersections a b and an integer distance 1 ≤ d ≤ 1000000 indicating a path of length d between intersection a and a different intersection b. Jimmy may walk a path any direction he chooses. There is at most one path between any pair of intersections. 
 
Output
For each test case, output a single integer indicating the number of different routes through the forest. You may assume that this number does not exceed 2147483647
 
Sample Input
5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24
7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
0
 
Sample Output
2
4
 
Source
 
题意是求从起点1到终点2的满足条件的路径条数,条件是该条路径上的所有边AB都要满足A到终点的最短路大于B到终点的最短路。
思路就是Dijkstra+记忆化搜索

/*
ID: LinKArftc
PROG: 1142.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ;
int n, m;
int mp[maxn][maxn];
int dis[maxn];
bool vis[maxn]; void dij(int s) {
for (int i = ; i <= n; i ++) dis[i] = mp[s][i];
memset(vis, , sizeof(vis));
vis[s] = true;
dis[s] = ;
for (int i = ; i <= n; i ++) {
int mi = inf;
int ii = s;//要赋值,因为下一行的for循环可能并不改变ii的值,所以可能会RE
for (int j = ; j <= n; j ++) {
if (!vis[j] && dis[j] < mi) {
mi = dis[j];
ii = j;
}
}
vis[ii] = true;
for (int j = ; j <= n; j ++) {
if (!vis[j] && dis[j] > dis[ii] + mp[ii][j]) {
dis[j] = dis[ii] + mp[ii][j];
}
}
}
} int cnt[maxn]; int dfs(int cur) {
if (cnt[cur]) return cnt[cur];
if (cur == ) return ;
int ret = ;
for (int i = ; i <= n; i ++) {
if (mp[cur][i] == inf || dis[i] >= dis[cur]) continue;
ret += dfs(i);
}
cnt[cur] = ret;
return ret;
} int main() {
//input;
int u, v, c;
while (~scanf("%d", &n) && n) {
scanf("%d", &m);
memset(mp, 0x3f, sizeof(mp));
for (int i = ; i <= m; i ++) {
scanf("%d %d %d", &u, &v, &c);
mp[u][v] = c;
mp[v][u] = c;
}
dij();
//for (int i = 1; i <= n; i ++) printf("dis[%d] = %d\n", i, dis[i]);
memset(cnt, , sizeof(cnt));
printf("%d\n", dfs());
} return ;
}

HDU1142 (Dijkstra+记忆化搜索)的更多相关文章

  1. luogu3953 [NOIp2017]逛公园 (tarjan+dijkstra+记忆化搜索)

    先跑一边dijkstra算出从1到i的最短距离dis[i] 然后建反向边 从n开始记忆化搜索,(p,k)表示1到p的距离=dis[p]+k的方案数 答案就是$\sum\limits_{i=0}^{k} ...

  2. HDU 1142 A Walk Through the Forest(Dijkstra+记忆化搜索)

    题意:看样子很多人都把这题目看错了,以为是求最短路的条数.真正的意思是:假设 A和B 是相连的,当前在 A 处, 如果 A 到终点的最短距离大于 B 到终点的最短距离,则可以从 A 通往 B 处,问满 ...

  3. Luogu 3953[NOIP2017] 逛公园 堆优化dijkstra + 记忆化搜索

    题解 首先肯定是要求出单源最短路的,我用了堆优化dijikstra ,复杂度 mlogm,值得拥有!(只不过我在定义优先队列时把greater 打成了 less调了好久 然后我们就求出了$i$到源点的 ...

  4. hdu-1142(记忆化搜索+dij)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1142 思路:1.不是求最短路径,而是求如果两个点A,B直接相连,且A到终点的距离大于B到终点的距离,求 ...

  5. hdu1142(dj+记忆化搜索)

    题意:给你n各点,m行关于这些点的联通关系,以及距离,求从1这个点到2这个点之间,下一个点到2这个点比当前点到2这个点的距离要小的路径的条数...... 思路:dj+记忆化搜索....... #inc ...

  6. hduoj----1142A Walk Through the Forest(记忆化搜索+最短路)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  7. HDU-1428(记忆化搜索)

    Problem Description LL 最近沉迷于AC不能自拔,每天寝室.机房两点一线.由于长时间坐在电脑边,缺乏运动.他决定充分利用每次从寝室到机房的时间,在校园里散散步.整个HDU 校园呈方 ...

  8. UVA - 10917 - Walk Through the Forest(最短路+记忆化搜索)

    Problem    UVA - 10917 - Walk Through the Forest Time Limit: 3000 mSec Problem Description Jimmy exp ...

  9. HDU 1142 A Walk Through the Forest(最短路+记忆化搜索)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

随机推荐

  1. Leetcode代码补全——链表

    通过补全代码可以更深刻的体会到,链表就是一个存储方式,通过一单元的存储指向下一单元,而查看单元内容通过头部开始的指针依次遍历.这是leetcode里融合两个链表的题目,具体代码如下: #encodin ...

  2. 为Zabbix配置RabbitMQ监控模板

    RabbitMQ的配置参考 https://github.com/jasonmcintosh/rabbitmq-zabbix 简而言之,具体分为几个步骤: 1. 将脚本文件(scripts文件夹)和配 ...

  3. 在阿里云上遇见更好的Oracle(三)

    鬼扯完“去IOE”,继续回来说说这个系列文章的主角Oracle. 在DB-Engine的数据库排行榜中,Oracle已经占据了多年的第一(最新排名可以点击“阅读原文”).当然因为互联网行业的兴起,My ...

  4. 目标检测之Faster-RCNN的pytorch代码详解(模型训练篇)

    本文所用代码gayhub的地址:https://github.com/chenyuntc/simple-faster-rcnn-pytorch  (非本人所写,博文只是解释代码) 好长时间没有发博客了 ...

  5. java设计模式之观察者模式以及在java中作用

    观察者模式是对象的行为模式,又叫发布-订阅(Publish/Subscribe)模式.模型-视图(Model/View)模式.源-监听器(Source/Listener)模式或从属者(Dependen ...

  6. 官方文档 恢复备份指南七 Using Flashback Database and Restore Points

    本章内容: Understanding Flashback Database, Restore Points and Guaranteed Restore Points Logging for Fla ...

  7. 最短路径——Bellman-Ford算法以及SPFA算法

    说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellm ...

  8. linux下生成core dump文件方法

    core 文件的简单介绍 当程序运行的过程中异常终止或崩溃,操作系统会将程序当时的内存状态记录下来,保存在一个文件中,这种行为就叫做Core Dump(中文有的翻译成“核心转储”).我们可以认为 co ...

  9. requests快速入门

    Requests 是唯一的一个非转基因的 Python HTTP 库,人类可以安全享用. 警告:非专业使用其他 HTTP 库会导致危险的副作用,包括:安全缺陷症.冗余代码症.重新发明轮子症.啃文档症. ...

  10. dechex()

    dechex() 函数把十进制转换为十六进制生成验证码的时候用到了