A Walk Through the Forest

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6935    Accepted Submission(s): 2548

Problem Description
Jimmy experiences a lot of stress at work these days, especially since his accident made working difficult. To relax after a hard day, he likes to walk home. To make things even nicer, his office is on one side of a forest, and his house is on the other. A nice walk through the forest, seeing the birds and chipmunks is quite enjoyable. 
The forest is beautiful, and Jimmy wants to take a different route everyday. He also wants to get home before dark, so he always takes a path to make progress towards his house. He considers taking a path from A to B to be progress if there exists a route from B to his home that is shorter than any possible route from A. Calculate how many different routes through the forest Jimmy might take. 
 
Input
Input contains several test cases followed by a line containing 0. Jimmy has numbered each intersection or joining of paths starting with 1. His office is numbered 1, and his house is numbered 2. The first line of each test case gives the number of intersections N, 1 < N ≤ 1000, and the number of paths M. The following M lines each contain a pair of intersections a b and an integer distance 1 ≤ d ≤ 1000000 indicating a path of length d between intersection a and a different intersection b. Jimmy may walk a path any direction he chooses. There is at most one path between any pair of intersections. 
 
Output
For each test case, output a single integer indicating the number of different routes through the forest. You may assume that this number does not exceed 2147483647
 
Sample Input
5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24
7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
0
 
Sample Output
2
4
 
Source
 
题意是求从起点1到终点2的满足条件的路径条数,条件是该条路径上的所有边AB都要满足A到终点的最短路大于B到终点的最短路。
思路就是Dijkstra+记忆化搜索

/*
ID: LinKArftc
PROG: 1142.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ;
int n, m;
int mp[maxn][maxn];
int dis[maxn];
bool vis[maxn]; void dij(int s) {
for (int i = ; i <= n; i ++) dis[i] = mp[s][i];
memset(vis, , sizeof(vis));
vis[s] = true;
dis[s] = ;
for (int i = ; i <= n; i ++) {
int mi = inf;
int ii = s;//要赋值,因为下一行的for循环可能并不改变ii的值,所以可能会RE
for (int j = ; j <= n; j ++) {
if (!vis[j] && dis[j] < mi) {
mi = dis[j];
ii = j;
}
}
vis[ii] = true;
for (int j = ; j <= n; j ++) {
if (!vis[j] && dis[j] > dis[ii] + mp[ii][j]) {
dis[j] = dis[ii] + mp[ii][j];
}
}
}
} int cnt[maxn]; int dfs(int cur) {
if (cnt[cur]) return cnt[cur];
if (cur == ) return ;
int ret = ;
for (int i = ; i <= n; i ++) {
if (mp[cur][i] == inf || dis[i] >= dis[cur]) continue;
ret += dfs(i);
}
cnt[cur] = ret;
return ret;
} int main() {
//input;
int u, v, c;
while (~scanf("%d", &n) && n) {
scanf("%d", &m);
memset(mp, 0x3f, sizeof(mp));
for (int i = ; i <= m; i ++) {
scanf("%d %d %d", &u, &v, &c);
mp[u][v] = c;
mp[v][u] = c;
}
dij();
//for (int i = 1; i <= n; i ++) printf("dis[%d] = %d\n", i, dis[i]);
memset(cnt, , sizeof(cnt));
printf("%d\n", dfs());
} return ;
}

HDU1142 (Dijkstra+记忆化搜索)的更多相关文章

  1. luogu3953 [NOIp2017]逛公园 (tarjan+dijkstra+记忆化搜索)

    先跑一边dijkstra算出从1到i的最短距离dis[i] 然后建反向边 从n开始记忆化搜索,(p,k)表示1到p的距离=dis[p]+k的方案数 答案就是$\sum\limits_{i=0}^{k} ...

  2. HDU 1142 A Walk Through the Forest(Dijkstra+记忆化搜索)

    题意:看样子很多人都把这题目看错了,以为是求最短路的条数.真正的意思是:假设 A和B 是相连的,当前在 A 处, 如果 A 到终点的最短距离大于 B 到终点的最短距离,则可以从 A 通往 B 处,问满 ...

  3. Luogu 3953[NOIP2017] 逛公园 堆优化dijkstra + 记忆化搜索

    题解 首先肯定是要求出单源最短路的,我用了堆优化dijikstra ,复杂度 mlogm,值得拥有!(只不过我在定义优先队列时把greater 打成了 less调了好久 然后我们就求出了$i$到源点的 ...

  4. hdu-1142(记忆化搜索+dij)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1142 思路:1.不是求最短路径,而是求如果两个点A,B直接相连,且A到终点的距离大于B到终点的距离,求 ...

  5. hdu1142(dj+记忆化搜索)

    题意:给你n各点,m行关于这些点的联通关系,以及距离,求从1这个点到2这个点之间,下一个点到2这个点比当前点到2这个点的距离要小的路径的条数...... 思路:dj+记忆化搜索....... #inc ...

  6. hduoj----1142A Walk Through the Forest(记忆化搜索+最短路)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  7. HDU-1428(记忆化搜索)

    Problem Description LL 最近沉迷于AC不能自拔,每天寝室.机房两点一线.由于长时间坐在电脑边,缺乏运动.他决定充分利用每次从寝室到机房的时间,在校园里散散步.整个HDU 校园呈方 ...

  8. UVA - 10917 - Walk Through the Forest(最短路+记忆化搜索)

    Problem    UVA - 10917 - Walk Through the Forest Time Limit: 3000 mSec Problem Description Jimmy exp ...

  9. HDU 1142 A Walk Through the Forest(最短路+记忆化搜索)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

随机推荐

  1. MySQL☞between ... and ...

    between  初值  and  终值:求出该列列值在初值和终值之间所有的数据 格式如下: select 列名/* from 表名 where 列名 between 初值 and 终值 如下图:

  2. java编程思想 内容总结

    Java编程思想重点笔记(Java开发必看) Java编程思想,Java学习必读经典,不管是初学者还是大牛都值得一读,这里总结书中的重点知识,这些知识不仅经常出现在各大知名公司的笔试面 试过程中,而且 ...

  3. 通过 systemctl 设置自定义 Service

    如果要在Linux 上设置一个开机自启,出现问题自动重启,并且有良好日志的程序,比较流行的方法有 supervisord.systemd,除此之外,还有 upstart.runit 等类似的工具. 但 ...

  4. linux 命令小结(随时更新)

    代码备份命令: tar cvf 备份文件名 要备份的目录名 查看Linux服务器内存使用情况: 1.free命令 free -m [root@localhost ~]# free -m        ...

  5. sqlite sql语句关键字GROUP BY的理解

    第一遍看GROUP BY的介绍时,没看懂. SQLite 的 GROUP BY 子句用于与 SELECT 语句一起使用,来对相同的数据进行分组.在 SELECT 语句中,GROUP BY 子句放在 W ...

  6. 【SSH】——两种添加jar包方式的比较

    [前言] 在开发过程中,我们对Eclipse或MyEclipse等IDE越来越熟悉了.在使用的过程中,小编了解到两种添加jar包的方式,今天给大家说下这两种方式的差别. 方法一: 将所需要的jar包拷 ...

  7. PhalApi 1.4.2 经典封存版 - 码云

    https://www.phalapi.net/ PhalApi 1.x 是经典封存版本,已停止更新,历练考验,可放心使用. 主要采用PEAR命名规范,遵循PSR-0,不支持命名空间和composer ...

  8. SQL 视图 局部变量 全局变量 条件语句 事务 触发器

    一.视图 1.视图是一张虚拟表,他所存储的不是实际数据,而是查询语句,但我们可以对视图进行像数据表一样的操作. 2.为什么使用视图呢?我的理解是:1.在远程传输数据时,可以避免过长的查询字符,减少流量 ...

  9. thinkphp3.2 常用单字母函数

    U函数:用来生成url U('地址表达式',['参数'],['伪静态后缀'],['显示域名'] 例如: U('Blog/read?id=1') // 生成Blog控制器的read操作 并且id为1的U ...

  10. XML中的DTD语法

    DTD(Document Type Definition),全称为文档类型定义. 文件清单:book.xml <?xml version="1.0" ?> <!D ...