Brief Description

给定一个序列,您需要处理m个询问,每个询问形如[l,r],您需要回答在区间[l,r]中任意选取两个数相同的概率。

Algorithm Design

莫队算法入门题目。

这篇博客讲的不错

对于L,R的询问。设袜子的个数为\(cnt_i\)

那么答案即为$$\frac{\sum_i C_{cnt}^2}{\frac{(R-L+1)(R-L)}{2}}$$

其中\(C_n^m\)为组合数。

化简得:$$\frac{\sum_i cnt^2 -(R-L+1)}{(R-L+1)
(R-L)}$$

所以这道题目的关键是求一个区间内每种颜色数目的平方和。

如果你知道了[L,R]的答案。你可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案的话。就可以使用莫队算法。

对于莫队算法我感觉就是暴力。只是预先知道了所有的询问。可以合理的组织计算每个询问的顺序以此来降低复杂度。要知道我们算完[L,R]的答案后现在要算[L',R']的答案。由于可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案.所以计算[L',R']的答案花的时间为|L-L'|+|R-R'|。如果把询问[L,R]看做平面上的点a(L,R).询问[L',R']看做点b(L',R')的话。那么时间开销就为两点的曼哈顿距离。所以对于每个询问看做一个点。我们要按一定顺序计算每个值。那开销就为曼哈顿距离的和。要计算到每个点。那么路径至少是一棵树。所以问题就变成了求二维平面的最小曼哈顿距离生成树。

关于二维平面最小曼哈顿距离生成树。感兴趣的可以参考胡泽聪大佬的这篇文章

这样只要顺着树边计算一次就ok了。可以证明时间复杂度为\(n* \sqrt n\)。

但是这种方法编程复杂度稍微高了一点。所以有一个比较优雅的替代品。那就是先对序列分块。然后对于所有询问按照L所在块的大小排序。如果一样再按照R排序。然后按照排序后的顺序计算。为什么这样计算就可以降低复杂度呢。

一、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n0.5块,所以这一部分时间复杂度是n1.5。

二、i与i+1跨越一块,r最多变化n,由于有n0.5块,所以这一部分时间复杂度是n1.5

三、i与i+1在同一块内时变化不超过n0.5,跨越一块也不会超过2*n0.5,不妨看作是n0.5。由于有n个数,所以时间复杂度是n1.5

于是就变成了\(\Theta(n^{1.5})\)了。

Code

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
const int maxn = 50010;
#define ll long long
ll num[maxn], up[maxn], dw[maxn], ans, aa, bb, cc;
int col[maxn], pos[maxn];
struct qnode {
int l, r, id;
} qu[maxn];
bool cmp(qnode a, qnode b) {
if (pos[a.l] == pos[b.l])
return a.r < b.r;
else
return pos[a.l] < pos[b.l];
}
ll gcd(ll x, ll y) {
ll tp;
while ((tp = x % y)) {
x = y;
y = tp;
}
return y;
}
void update(int x, int d) {
ans -= num[col[x]] * num[col[x]];
num[col[x]] += d;
ans += num[col[x]] * num[col[x]];
}
int main() {
int n, m, bk, pl, pr, id;
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &m);
memset(num, 0, sizeof(num));
bk = ceil(sqrt(1.0 * n));
for (int i = 1; i <= n; i++) {
scanf("%d", &col[i]);
pos[i] = (i - 1) / bk;
}
for (int i = 0; i < m; i++) {
scanf("%d %d", &qu[i].l, &qu[i].r);
qu[i].id = i;
}
std::sort(qu, qu + m, cmp);
pl = 1, pr = 0;
ans = 0;
for (int i = 0; i < m; i++) {
id = qu[i].id;
if (qu[i].l == qu[i].r) {
up[id] = 0, dw[id] = 1;
continue;
}
if (pr < qu[i].r) {
for (int j = pr + 1; j <= qu[i].r; j++)
update(j, 1);
} else {
for (int j = pr; j > qu[i].r; j--)
update(j, -1);
}
pr = qu[i].r;
if (pl < qu[i].l) {
for (int j = pl; j < qu[i].l; j++)
update(j, -1);
} else {
for (int j = pl - 1; j >= qu[i].l; j--)
update(j, 1);
}
pl = qu[i].l;
aa = ans - qu[i].r + qu[i].l - 1;
bb = (ll)(qu[i].r - qu[i].l + 1) * (qu[i].r - qu[i].l);
cc = gcd(aa, bb);
aa /= cc, bb /= cc;
up[id] = aa, dw[id] = bb;
}
for (int i = 0; i < m; i++)
printf("%lld/%lld\n", up[i], dw[i]);
}

[bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法的更多相关文章

  1. BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3577  Solved: 1652[Subm ...

  2. [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 10299  Solved: 4685[Sub ...

  3. BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法

    要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...

  4. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  5. 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...

  6. bzoj2038: [2009国家集训队]小Z的袜子(hose) [莫队]

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  7. BZOJ2038[2009国家集训队]小Z的袜子(hose)——莫队

    题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜子从1到N编号 ...

  8. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

随机推荐

  1. python内置模块[sys,os,os.path,stat]

    python内置模块[sys,os,os.path,stat] 内置模块是python自带功能,在使用内置模块时,需要遵循 先导入在 使用 一.sys 对象 描述 sys.argv 命令行参数获取,返 ...

  2. jenkins安全内容配置策略

    有时我们使用HTML Publisher Plugin插件时,在jenkins点开html report,会发现没有带任何的css或js样式,这是因为Jenkins 1.641 / Jenkins 1 ...

  3. js学习日记-隐式转换相关的坑及知识

    隐式转换比较是js中绕不过去的坎,就算有几年经验的工程师也很有可能对这块知识不够熟悉.就算你知道使用===比较从而避免踩坑,但是团队其它成员不一定知道有这样或那样的坑,有后端语言经验的人常常会形成一个 ...

  4. IDEA的terminal设置成Linux的终端一样

    方式一:通过在Windows上安装Linux命令行工具 前提:需要安装Linux终端的命令行工具,并且最好可以安装 Gow (一个Windows下模拟Linux命令行工具集合,它集成了 Liunx 环 ...

  5. Python学习笔记(二)一一一字典总结

    创建方式:1 直接创建     newDictonary={‘key’:'value',} 2 列表转字典(dict函数) 3 基本操作:len 返回总数 dictionary[k]  返回k对应的值 ...

  6. 贝叶斯网(1)尝试用Netica搭建简单的贝叶斯网并使用贝叶斯公式解释各个bar的结果

    近来对贝叶斯网十分感兴趣,按照博客<读懂概率图模型:你需要从基本概念和参数估计开始>给出的第一个例子,试着搭建了一个student网. (1)点击绿F,对条件概率表予以输入(包括两个祖先节 ...

  7. tensorflow Importing Data

    tf.data API可以建立复杂的输入管道.它可以从分布式文件系统中汇总数据,对每个图像数据施加随机扰动,随机选择图像组成一个批次训练.一个文本模型的管道可能涉及提取原始文本数据的符号,使用查询表将 ...

  8. UVA 11884 A Shooting Game(记忆化搜索)

    A and B are playing a shooting game on a battlefield consisting of square-shaped unit blocks. The bl ...

  9. PAT 1088 三人行

    https://pintia.cn/problem-sets/994805260223102976/problems/1038429286185074688 子曰:“三人行,必有我师焉.择其善者而从之 ...

  10. 使用 Redis的SETNX命令实现分布式锁

    使用Redis的 SETNX 命令可以实现分布式锁,下文介绍其实现方法. SETNX命令简介 命令格式 SETNX key value 将 key 的值设为 value,当且仅当 key 不存在. 若 ...