51nod 1245 Binomial Coefficients Revenge
Description
C(M,N) = M! / N! / (M - N)! (组合数)。给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p的倍数但不是p2的倍数,有多少是p2的倍数但不是p^3的倍数......。
例如:M = 10, P = 2。C(10,0) -> C(10,10)
分别为:1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1。
P的幂 = 1 2 4 8 16......
1 45 45 1 这4个数只能整除1。
10 210 210 10这4个数能整除2但不能整除4。
252 能整除4但不能整除8。
120 120 这2个数能整除8但不能整除16。
Solution
一个质数出现了 \(k\) 次,那么 \(2^{1,2....,k}\) 都出现过
判断一个质数在 \(n!\) 中出现的次数就是:
\(\sum_{i=1}^{n} \lfloor\frac{n}{p^i}\rfloor\)
那么 \(C_{n}^{m}\) 的贡献就是 \(\sum \lfloor\frac{n}{p^i}\rfloor-\lfloor\frac{m}{p^i}\rfloor-\lfloor\frac{n-m}{p^i}\rfloor\)
\(\lfloor\frac{n}{p^i}\rfloor-\lfloor\frac{m}{p^i}\rfloor-\lfloor\frac{n-m}{p^i}\rfloor\) 的值不是 \(1\) 就是 \(0\)
是 \(1\) 的条件是 \(n \mod P<m \mod P\)
那么把 \(n\) 看成 \(P\) 进制数,从高位到低位看的话,也就是统计满足 \(n\) 的某个后缀大于 \(m\) 的某个后缀的个数
从低位到高位做,设 \(f[i][j][0/1]\) 表示前 \(i\) 位,满足条件的后缀个数是 \(j\),相对于 \(n\) 是危险态还是安全态的方案数(\(m\) 要小于 \(n\))
#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
typedef long long ll;
const int N=105;
ll n,P,a[N],f[N][N][2];int m=0;
inline void work(){
m=0;
memset(f,0,sizeof(f));
cin>>n>>P;
ll x=n;
while(x)a[++m]=x%P,x/=P;
f[1][1][1]=P-1-a[1];f[1][0][0]=a[1]+1;
for(int i=1;i<m;i++){
for(int j=0;j<=i;j++){
f[i+1][j+1][1]+=f[i][j][1]*(P-a[i+1])+f[i][j][0]*(P-a[i+1]-1);
f[i+1][j][0]+=f[i][j][0]*(a[i+1]+1)+f[i][j][1]*a[i+1];
}
}
for(int i=0;i<N && f[m][i][0];i++)
printf("%lld ",f[m][i][0]);
puts("");
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int T;cin>>T;
while(T--)work();
return 0;
}
51nod 1245 Binomial Coefficients Revenge的更多相关文章
- 【51nod 1245】Binomial Coefficients Revenge
题目大意 C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p ...
- 51nod1245 Binomial Coefficients Revenge
题目来源: HackerRank 基准时间限制:2 秒 空间限制:131072 KB 分值: 640 C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0 ...
- UVA 1649 Binomial coefficients
https://vjudge.net/problem/UVA-1649 题意: 输入m,求所有的C(n,k)=m m<=1e15 如果枚举n,那么C(n,k)先递增后递减 如果枚举k,那么C(n ...
- UVa 1649 Binomial coefficients 数学
题意: \(C(n, k) = m(2 \leq m \leq 10^{15})\),给出\(m\)求所有可能的\(n\)和\(k\). 分析: 设\(minK = min(k, n - k)\),容 ...
- UVA - 1649 Binomial coefficients (组合数+二分)
题意:求使得C(n,k)=m的所有的n,k 根据杨辉三角可以看出,当k固定时,C(n,k)是相对于n递增的:当n固定且k<=n/2时,C(n,k)是相对于k递增的,因此可以枚举其中的一个,然后二 ...
- Some series and integrals involving the Riemann zeta function binomial coefficients and the harmonic numbers
链接:http://pan.baidu.com/s/1eSNkz4Y
- 99 Lisp Problems 列表处理(P1~P28)
L-99: Ninety-Nine Lisp Problems 列表处理类问题的解答,用Scheme实现,首先定义几个在后续解题中用到的公共过程: ; common procedure (define ...
- UVA10375 Choose and divide 质因数分解
质因数分解: Choose and divide Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %l ...
- 【AtCoder】ARC095 C-F题解
我居然每道题都能想出来 虽然不是每道题都能写对,debug了很久/facepalm C - Many Medians 排序后前N/2个数的中位数时排序后第N/2 + 1的数 其余的中位数都是排序后第N ...
随机推荐
- FTP文件上传以及获取ftp配置帮助类
帮助类: using QSProjectBase; using Reform.CommonLib; using System; using System.Collections.Generic; us ...
- 从程序员的角度深入理解MySQL
前言 今天我将站在程序员的角度以MySQL为例探索数据库的奥秘! 数据库基本原理 我对DB的理解 1.数据库的组成:存储 + 实例 不必多说,数据当然需要存储:存储了还不够,显然需要提供程序对存储 ...
- oracle查询分区表中的数据
select * from TABLE_NAME partition(分区名) T WHERE T.COL_NAME= 'XX';
- 题解 BZOJ 1002 【[FJOI2007]轮状病毒】
题目链接 emm…… 正解:矩阵树定理,但是本宝宝不会求基尔霍夫矩阵. 开始考场方法: 手动模拟$n=1--5$时的答案(数不大,~~画画就出来了~~要画上半个小时). 画出来,答案是这样的:$1$ ...
- loj #2509. 「AHOI / HNOI2018」排列
#2509. 「AHOI / HNOI2018」排列 题目描述 给定 nnn 个整数 a1,a2,…,an(0≤ai≤n),以及 nnn 个整数 w1,w2,…,wn.称 a1,a2,…,an 的 ...
- Georgia and Bob POJ - 1704 阶梯Nim
$ \color{#0066ff}{ 题目描述 }$ Georgia and Bob decide to play a self-invented game. They draw a row of g ...
- spark_flume_mysql 整合
本人的开发环境: 1.虚拟机centos 6.5 2.jdk 1.8 3.spark2.2.0 4.scala 2.11.8 5.maven 3.5.2 在开发和搭环境时必须注意版本兼容的问题 ...
- CentOS7.4关闭防火墙
//临时关闭 systemctl stop firewalld //禁止开机启动 systemctl disable firewalld Removed symlink /etc/systemd/sy ...
- Gym - 101908G 二分答案+最大流
After the end of the truck drivers' strike, you and the rest of Nlogônia logistics specialists now h ...
- Android 利用apache tomcat在自己的电脑上搭建服务器
1.什么叫服务器 装了服务器端的软件的那台电脑被称为服务器.常见的服务器的软件有apache tomcat. 2.Tomcat 介绍 tomcat是一种轻量级的web容器服务器,使用tomcat可以实 ...