一个数能整除3当且仅当各位数之和能整除3。

有了这个规律就好办了, 但是呢,仔细一看, n太大了, 都到 2^31 了。所以简单的模拟肯定不行。

这种貌似像数论的题,一时找不到好办法,就打表!

打表出来是这个样子

1 0
    2 1
    3 2
    4 2
    5 3
    6 4
    7 4
    8 5
    9 6
    10 6

很有规律啊,1,22,3,44…… 如果我们把每三个看成一个(不算1),那么就是每三个元素增加2

    于是首先想到是不是 n/3*2 呢? 实验几次发现,不可行,有些不符合,但是我们的思路应该是正确的,仔细一想,由于整除的原因,有精度问题,所以我们先乘后除,可以很大程度上减小这种误差,我直接把表达式换了一下位置 n*2/3就过了。

代码很简单:

#include <iostream>
using namespace std;
int main()
{
long long a;
cin>>a;
a = a * / ;
cout<<a<<endl;
}

sgu 105 Div 3的更多相关文章

  1. SGU 105 div.3 找规律

    There is sequence 1, 12, 123, 1234, ..., 12345678910, ... . Given first N elements of that sequence. ...

  2. (水题) Div 3 -- SGU -- 105

    链接: http://vj.acmclub.cn/contest/view.action?cid=168#problem/E 时限:250MS     内存:4096KB     64位IO格式:%I ...

  3. 水题 Codeforces Round #105 (Div. 2) B. Escape

    题目传送门 /* 水题:这题唯一要注意的是要用double,princess可能在一个小时之内被dragon赶上 */ #include <cstdio> #include <alg ...

  4. Div 3 - SGU 105(找规律)

    分析:很容易知道序列1,2,3, 4,5, 6......与3的关系就是1,2, 0,1, 2,0,......如果是在一个数后面添加一个数就变成了这种序列1, 0, 0, 1, 0, 0, 1, 0 ...

  5. SGU 105

    There is sequence 1, 12, 123, 1234, ..., 12345678910, ... . Given first N elements of that sequence. ...

  6. 数论 - SGU 105 DIV3

    SGU 105-DIV 3 Problem's Link Mean: 定义这样一种数列:1,12,123.. 给出一个n,求这个数列中能被3整除的数的个数. analyse: 这道题可以用分析的方法解 ...

  7. Codeforces Round #105 (Div. 2) 148C Terse princess(脑洞)

    C. Terse princess time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  8. Codeforces Round #105 (Div. 2) ABCDE

    A. Insomnia cure 哎 只能说英语太差,一眼题我看了三分钟. 题意:给5个数k, l, m, n 和 d,求1~d中能被k, l, m, n 至少一个整除的数的个数. 题解:…… 代码: ...

  9. codeforces水题100道 第四题 Codeforces Round #105 (Div. 2) A. Insomnia cure (math)

    题目链接:http://www.codeforces.com/problemset/problem/148/A题意:求1到d中有多少个数能被k,l,m,n中的至少一个数整出.C++代码: #inclu ...

随机推荐

  1. 编写一个Java应用程序,该程序包括3个类:Monkey类、People类和主类 E。要求: (1) Monkey类中有个构造方法:Monkey (String s),并且有个public void speak() 方法,在speak方法中输出“咿咿呀呀......”的信息。 (2)People类是Monkey类的子类,在People类中重写方法speak(),在speak方法 中输出“小样的,不

    package homework1; public class Monkey { //构造方法 Monkey(String s) { } //成员方法 public void speak() { Sy ...

  2. 多线程编程(一) - 关于C#中Thread.Join()

    Thread.Join()在MSDN中的解释很模糊:Blocks the calling thread until a thread terminates 有两个主要问题:1.什么是the calli ...

  3. careercup-C和C++ 13.4

    13.4 深拷贝和浅拷贝有什么区别,如何使用? 解答 浅拷贝并不复制数据,只复制指向数据的指针,因此是多个指针指向同一份数据. 深拷贝会复制原始数据,每个指针指向一份独立的数据.通过下面的代码, 可以 ...

  4. 文件和目录之chown、fchown和lchown函数

    下面几个chown函数可用于更改文件的用户ID和组ID. #include <unistd.h> int chown( const char *pathname, uid_t owner, ...

  5. 16% off MPPS V16 ECU tuning tool for EDC15 EDC16 EDC17

    EOBD2.FR is offering 16% discount off the latest MPPS V16 ECU chip tuning tool. The device is now so ...

  6. datagrid rownumber行号与数据行显示错位的解决办法

    最近在使用datagrid控件,遇到问题多多. 其中一个就是datagrid在使用行编号的情况下,行编号与数据行出现错位的情况,如图:

  7. Spring-boot访问MongoDB

    1.访问配置信息 package hello; import org.springframework.context.annotation.Bean; import org.springframewo ...

  8. ORM之PetaPoco入门(一)--Petapoco简介

    1. ORM概括 1.1. ORM简介 ORM 对象-关系映射(Object/Relation Mapping,简称ORM),是随着面向对象的软件开发方法发展而产生的.面向对象的开发方法是当今企业级应 ...

  9. 基于嵌入式的c语言连接器

      一个C程序可能是由多个分别编译的部分组成,这些不同部分通过一个通常叫做链接器(或连接器,载入器)的程序合并成一个整体.因为编译器一般每次只处理一个文件,所以它不能检测出那些需要一次了解多个源程序文 ...

  10. MSP430常见问题之工作模式和功耗类

    Q1:1,MSP430进入LP 模式后,CPU 停止运行,那么,进入中断执行退出后,由于SR的恢复,导致还处于LP 模式,是否意味着,CPU 在退出中断后立即停止了呢?2,也就是说,进入LP 模式后, ...