简单原则少ROM,少RAM,任务完成就让出CPU,调度器描述:

1、按最大任务数轮番调度;

2、任务调用延时接口将让出CPU使用权,进入下一个任务调度;

3、用户任务都处于延时或是不使用CPU运行Idle任务;

4、最大任务数255;

5、任务用独立栈,栈大小由用户自定义;

6、调度器无需初始化,代码为单个C文件,结构简单,代码尺寸小;

7、调度器加3个任务代码尺寸:Code=1428 RO-data=268 RW-data=32 ZI-data=520 

软件环境:Keil Mdk 4.7a 硬件:stm32f103vb

 

-------------------------------------------------------------------------------------------------

//调度器C文件 Switch.c

#include "stm32f10x.h"
#include "switch.h"
#include "string.h"
#include "stdbool.h"

TCB      TaskTCB[MAX_TASK + 1] = {0};
TCB      *TaskNew, *TaskRuning;
uint32_t IdleStack[20];
uint8_t  TaskCnt = 0;

void TaskIdle() {
    while(1){
    }
}

__asm void TaskSwitch(void)
{
    LDR     R0, =0xE000ED22
    LDR     R1, =0xFF
    STRB    R1, [R0]
    LDR     R0, =0xE000ED04              
    LDR     R1, =0x10000000
    STR     R1, [R0]
    BX      LR
      ALIGN
}

__asm void PendSV_Handler(void)
{
        IMPORT  TaskRuning
        IMPORT  TaskNew
    CPSID   I                                                  
    MRS     R0, PSP                                            
    CBZ     R0, NoSave                          

    SUBS    R0, R0, #0x20                                      
    STM     R0, {R4-R11}

    LDR     R1, =TaskRuning                                    
    LDR     R1, [R1]
    STR     R0, [R1]                                           
NoSave

    LDR     R0, =TaskRuning                                    
    LDR     R1, =TaskNew
    LDR     R2, [R1]
    STR     R2, [R0]

    LDR     R0, [R2]                                           
    LDM     R0, {R4-R11}                                       
    ADDS    R0, R0, #0x20
    MSR     PSP, R0                                            
    ORR     LR, LR, #0x04                                      
    CPSIE   I
    BX      LR                                                
    ALIGN
}

void  SysTick_Handler (void)
{  
      uint8_t i;
      bool bOneSwitch;
      bOneSwitch = false;
      for(i = 0; i < MAX_TASK; i++){
            if(TaskTCB[i].Delay != 0){
                TaskTCB[i].Delay--;           
      }
            if(bOneSwitch == false){
              TaskCnt %= MAX_TASK;
                if(0 == TaskTCB[TaskCnt].Delay){
                    bOneSwitch = true;
                    TaskNew = &TaskTCB[TaskCnt++];
                }else{
                     TaskCnt++;
                }
          }
    }
        if(bOneSwitch == false)
            TaskNew = &TaskTCB[IDLE_TASK];
        TaskSwitch();
}

void SwitchDelay(uint16_t nTick)
{
      uint8_t i;
      if(0 == nTick)
            return;
      TaskRuning->Delay = nTick;            
      for(i = 0; i < MAX_TASK; i++){
            TaskCnt %= MAX_TASK;   
            if(0 == TaskTCB[TaskCnt].Delay){
                TaskNew = &TaskTCB[TaskCnt++];
                break;
            }else TaskCnt++;
    }
        if(TaskRuning == TaskNew)
            TaskNew = &TaskTCB[IDLE_TASK];
      TaskSwitch();
}

void SwitchTaskInt(void (*task)(void), OS_STK *ptos)
{
      if(MAX_TASK + 1 <= TaskCnt){
            TaskCnt = 0;
            return;
    }
      if(NULL == task)
            return;
        if(NULL == ptos)
            return;
    *(ptos)    = (INT32U)0x01000000L;            
    *(--ptos)  = (INT32U)task;                    
        TaskTCB[TaskCnt]. pTaskStack =  ptos -14;
        TaskTCB[TaskCnt++]. Delay =  0;   
}

void SwitchStart(void)
{
    SystemInit();                                                                 
    __set_PSP(0);                                                            
    SwitchTaskInt(TaskIdle, IdleStack+19);    
    SysTick_Config((SystemCoreClock / N_TICK_IN_SECOND) - 1); 
}

 

-------------------------------------------------------------------------------------------------

//调度器头文件 SWitch.h

#ifndef __SWITCH_H__
#define __SWITCH_H__

#include "stdint.h"
#define MAX_TASK          2
#define N_TICK_IN_SECOND  1000

#define IDLE_TASK         MAX_TASK
typedef uint32_t OS_STK;
typedef uint32_t INT32U;

typedef struct TCB
{
  uint32_t *pTaskStack;
    uint16_t Delay;
}TCB;

extern  TCB *TaskRuning;
extern  TCB *TaskNew;
extern  TCB  TCBTask[MAX_TASK];

void    SwitchTaskInt(void (*task)(void), OS_STK *ptos);
void    SwitchDelay(uint16_t Time);
void    SwitchStart(void);

#endif

 

-------------------------------------------------------------------------------------------------

//应用Demo App.c

#include    "stm32f10x.h"
#include    "stm32f10x_rcc.h"
#include    "stm32f10x_gpio.h"

#include "switch.h"
#include <stdio.h>

u32 TaskStack[2][40];

void Task0(void);
void Task1(void);

int main(void)
{
    SwitchTaskInt(Task0, &TaskStack[0][39]);
    SwitchTaskInt(Task1, &TaskStack[1][39]);
  SwitchStart();
    while(1);
}

void Task0(void)
{
   u8 i;
   for(;;)
   {
     i = i;
     //SwitchDelay(200);

   }
}
void Task1(void)
{
   u8 i;
   for(;;)
   {
     //SwitchDelay(300);
     i = i;
   }
}

 

调度器代码: 点击下载

简单OS(ucos超级精简版)——裸调度器【worldsing笔记】的更多相关文章

  1. 推荐《C Primer Plus(第五版)中文版》【worldsing笔记】

      老外写的C书,看了你会有一种哇塞的感觉,这里提供PDF扫描版的下在,包含数内的例程,请大家支持原版!! C Primer Plus(第五版)中文版.pdf  下载地址:http://pan.bai ...

  2. k8s调度器介绍(调度框架版本)

    从一个pod的创建开始 由kubectl解析创建pod的yaml,发送创建pod请求到APIServer. APIServer首先做权限认证,然后检查信息并把数据存储到ETCD里,创建deployme ...

  3. Linux 调度器发展简述

    引言 进程调度是操作系统的核心功能.调度器只是是调度过程中的一部分,进程调度是非常复杂的过程,需要多个系统协同工作完成.本文所关注的仅为调度器,它的主要工作是在所有 RUNNING 进程中选择最合适的 ...

  4. Yarn 调度器Scheduler详解

    理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资 ...

  5. 第1节 yarn:14、yarn集群当中的三种调度器

    yarn当中的调度器介绍: 第一种调度器:FIFO Scheduler  (队列调度器) 把应用按提交的顺序排成一个队列,这是一个先进先出队列,在进行资源分配的时候,先给队列中最头上的应用进行分配资源 ...

  6. Hadoop调度器

    一.FIFO调度器(先进先出调度) 上图为FIFO调度器的执行过程示意图.FIFO Scheduler是最简单也是最容易理解的调度器,它缺点是不适用于共享集群.大的应用可能会占用所有集群资源,这就导致 ...

  7. YARN调度器(Scheduler)详解

    理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资 ...

  8. [异常解决] ubuntu上安装虚拟机遇到的问题(vmware坑了,virtual-box简单安装,在virtual-box中安装精简版win7)

    利用周末时间将整个电脑格式化,换成了ubuntu系统- 所谓:扫清屋子再请客! 但是有些软件只在win上有,于是还是考虑装个虚拟机来个——逐步过度策略,一点点地从win上转移到linux上 我的系统是 ...

  9. [原创]spring及springmvc精简版--AOP

    接上一篇:[原创]spring及springmvc精简版--IOC 理解AOP.java是一种面向对象的语言.而AOP是面向切面,在我看来是面向逻辑或者业务编程,它是对一组逻辑的抽象和分配. 经典例子 ...

随机推荐

  1. SQLite入门与分析(二)---设计与概念(续)

    SQLite入门与分析(二)---设计与概念(续)   写在前面:本节讨论事务,事务是DBMS最核心的技术之一.在计算机科学史上,有三位科学家因在数据库领域的成就而获ACM图灵奖,而其中之一Jim G ...

  2. POJ2513——Colored Sticks(Trie树+欧拉回路+并查集)

    Colored Sticks DescriptionYou are given a bunch of wooden sticks. Each endpoint of each stick is col ...

  3. linux文件系统-基本磁盘2

    直入主题-基本磁盘 硬盘数据按照不同特点和作用大致分为5部分:MBR区.DBR区.FAT区.DIR区和DATA区 1.MBR MBR(Main Boot Record 主引导记录区)位于整个硬盘的0磁 ...

  4. poj 1080 Human Gene Functions(dp)

    题目:http://poj.org/problem?id=1080 题意:比较两个基因序列,测定它们的相似度,将两个基因排成直线,如果需要的话插入空格,使基因的长度相等,然后根据那个表格计算出相似度. ...

  5. 菜单练习-关机&取消

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> voi ...

  6. linq .dbml转化成sql脚本

    public String ConvertDBMLToSqlScript(System.Data.Linq.DataContext DBContext)  {         String DBCon ...

  7. iScroll-5拉动刷新功能实现与iScroll-4上拉刷新的一点改进

    近来在学习移动设备的应用开发,接触了jQuery mobile,在网上查阅相关资料时发现一个叫”iScroll“的小插件.其实这个iScroll插件跟jQuery mobile没有多大关系,并不是基于 ...

  8. Gentoo安装

    Gentoo Linux安装详解--根据官方WiKi整理 时间:2014-06-26 06:37:54      阅读:549      评论:0      收藏:0      [点我收藏+] 标签: ...

  9. 什么是Code Review(转)

    Code Review是一种通过复查代码提高代码质量的过程,在XP方法中占有极为重要的地位,也已经成为软件工程中一个不可缺少的环节.本文通过对Code Review的一些概念和经验的探讨,就如何进行C ...

  10. ZEat

    借助微博平台,记录每日饮食情况的Andorid程序. 项目地址:https://github.com/atskyline/ZEat 1.0.0APK下载地址:https://github.com/at ...