作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html

给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。

可图化的判定为:$d_1+d_2+ \cdots +d_n=0(mod2)$。即把奇数度的点配对,剩下的变为自环。
可简单图化的判定,即Havel-Hakimi定理:

我们把序列$D$变换为非增序列,即$d_1\geq d_2\geq \cdots \geq d_n$,则$D$可简单图化当且仅当$D'=(d_2-1, d_3-1, \cdots ,d_{(d1+1)}-1, d_{d1+2}, d_{d1+3}, \cdots ,d_n)$可简单图化。

证明:

<--:若$D'$可简单图化,把原图$G_D$中的最大度点与$G_{D'}$中度最大的$d_1$个点连边即可,图$G_D$必为简单图。

-->:若$D$可简单图化,设得到的简单图为$D_G$。分两种情况考虑:
(a)若$G_D$中存在边$(v_1,v_2), (v_1,v_3), \dots ,(v_1,v_{d_1+1})$,则删除这些边得简单图$G_{D'}$,于是$D'$可简单图化为$G_{D'}$

(b)若存在点$v_i,v_j(i<j)$且$(v_1,v_i)$不在$G_D$中,但$(v_1,v_j)$在$G_D$中。这时,因为$d_i \geq d_j$,必存在$k$使得$(v_i, v_k)$在$D_G$中但$(v_j,v_k)$不在$G_D$中。这时我们可以令$G''=G_D-\{(v_i,v_k),(v_1,v_j)\}+\{(v_k,v_j),(v_1,v_i)\}$。$G''$的度序列仍为$D$,使用情况(a)处理。

例如对于下图,我们删除两条打红X的边,添加两条虚线的边,即可转化为$G''$

代码实现很简单,每次对数组arr排序,然后对于arr[1],arr[2],...,arr[arr[0]]每个数减一,并另arr[0]=0。重复n次,最后检验数组是否全部为0,是则输出YES和图,否则输出NO。

需要注意的是输出格式,每两个case之间需要输出一个空行。

代码如下:

 #include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <algorithm>
#define MAXN 11
using namespace std;
class node
{
public:
int id;
int degree;
bool operator < (const node & a)const
{
return degree>a.degree;
}
};
int n;
node arr[MAXN];
int map[MAXN][MAXN];
void solve()
{
memset(map, , sizeof(map));
for( int i = ; i < n ; i++ )
{
sort(arr, arr+n);
for( int j = ; j <= arr[].degree ; j++ )
{
arr[j].degree -= ;
map[arr[].id][arr[j].id] = ;
map[arr[j].id][arr[].id] = ;
}
arr[].degree = ;
}
for( int i = ; i < n ; i++ )
{
if( arr[i].degree < )
{
printf("NO\n\n");
return ;
}
}
printf("YES\n");
for( int i = ; i < n ; i++ )
{
for( int j = ; j < n ; j++ )
{
printf("%d%c", map[i][j], j==(n-)?'\n':' ');
}
}
printf("\n");
}
int main(int argc, char *argv[])
{
int t;
scanf("%d", &t);
while( t-- )
{
scanf("%d", &n);
for( int i = ; i < n ; i++ )
{
scanf("%d", &arr[i].degree);
arr[i].id = i;
}
solve();
}
}

poj 1659 Frogs' Neighborhood Havel-Hakimi定理 可简单图定理的更多相关文章

  1. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  2. POJ 1659 Frogs' Neighborhood (Havel定理构造图)

    题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...

  3. poj 1659 Frogs' Neighborhood (DFS)

    http://poj.org/problem?id=1659 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total S ...

  4. POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)

    题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...

  5. POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10545   Accepted: 4 ...

  6. POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)

    题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...

  7. poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6076   Accepted: 26 ...

  8. poj 1659 Frogs' Neighborhood( 青蛙的邻居)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9639   Accepted: 40 ...

  9. poj 1659 Frogs' Neighborhood(出入度、可图定理)

    题意:我们常根据无向边来计算每个节点的度,现在反过来了,已知每个节点的度,问是否可图,若可图,输出一种情况. 分析:这是一道定理题,只要知道可图定理,就是so easy了  可图定理:对每个节点的度从 ...

随机推荐

  1. Winform 水印TextBox

    方法一: public partial class WaterTextBox : TextBox { private readonly Label lblwaterText = new Label() ...

  2. [AngularJS] Provider

    This lesson describes what is really happening when you use the angularfactory and how you can make ...

  3. Computer Science Theory for the Information Age-3: 高维空间中的高斯分布和随机投影

    高维空间中的高斯分布和随机投影 (一)在高维球体表面产生均匀分布点的方法 我们来考虑一个采样问题,就是怎样在高维单位球体的表面上均匀的采样.首先,考虑二维的情况,就是在球形的周长上采样.我们考虑如下方 ...

  4. "jobTracker is not yet running"(hadoop 配置)

    今天自己尝试做配置了一下hadoop,环境是ubuntu13.10+jdk1.7.0_51+hadoop version1.2.1. 主要过程主要参考http://blog.csdn.net/hitw ...

  5. 小白日记35:kali渗透测试之Web渗透-手动漏洞挖掘(一)-默认安装引发的漏洞

    手动漏洞挖掘 即扫描后,如何对发现的漏洞告警进行验证. #默认安装 流传linux操作系统比windows系统安全的说法,是因为windows系统默认安装后,会开放很多服务和无用的端口,而且未经过严格 ...

  6. Java SE ---关系运算符

    java里的关系运算符有这么几种:大于(>).小于(<).等于(==).不等于(!=).大于等于(>=).小于等于(<=), 关系运算的结果是个boolean值,关系式成立为t ...

  7. 最短路径之Dijkstra算法及实例分析

    Dijkstra算法迪科斯彻算法 Dijkstra算法描述为:假设用带权邻接矩阵来表示带权有向图.首先引进一个辅助向量D,它的每个分量D[i]表示当前所找到的从始点v到每个终点Vi的最短路径.它的初始 ...

  8. Linux中的crontab命令用法

    Crontab 在linux中,crontab的用来设置定期执行指定的命令,我们可以用它来指定一些需要重复的事情,Linux系统的用户只需将想要定期要执行的命令序列加到crontab文件中,操作系统即 ...

  9. ibatis返回结果映射到HashMap时,列名无效的问题

    遇到问题: 1.项目开发过程中在xml配置文件中使用$tableName/sql$时,报"列名无效"错误,后来经过查询,发现是ibatis缓存 了上一次查询的表结构的原因.解决办法 ...

  10. js中关于事件处理函数名后面是否带括号的问题

    今天总结一个关于事件处理程序的小细节.首先回顾一下事件处理的一些概念. JS中的事件处理(事件绑定)就是让某种或某些事件触发某些活动.有两种常见的形式,分别是DOM Level 0 和DOM Leve ...