AVL的旋转
转自http://blog.csdn.net/gabriel1026/article/details/6311339
平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找、插入和删除操作在平均和最坏情况下时间复杂度都是O(log n)
AVL树的旋转一共有四种情形,注意所有旋转情况都是围绕着使得二叉树不平衡的第一个节点展开的。
1. LL型
平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向右旋转一次即可,如图所示,原A的左孩子B变为父结点,A变为其右孩子,而原B的右子树变为A的左子树,注意旋转之后Brh是A的左子树(图上忘在A于Brh之间标实线)
2. RR型
平衡二叉树某一节点的右孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时只需要把树向左旋转一次即可,如图所示,原A右孩子B变为父结点,A变为其左孩子,而原B的左子树Blh将变为A的右子树。
3. LR型
平衡二叉树某一节点的左孩子的右子树上插入一个新的节点,使得该节点不再平衡。这时需要旋转两次,仅一次的旋转是不能够使二叉树再次平衡。如图所示,在B节点按照RR型向左旋转一次之后,二叉树在A节点仍然不能保持平衡,这时还需要再向右旋转一次。
4. RL型
平衡二叉树某一节点的右孩子的左子树上插入一个新的节点,使得该节点不再平衡。同样,这时需要旋转两次,旋转方向刚好同LR型相反。
AVL的旋转的更多相关文章
- 我的新发现:AVL树旋转的一个特性
关于AVL树旋转的代码网络上铺天盖地. 一些经典的实现方法如下: AVLTree SingleLeftRotation(AVLTree A) { AVLTree B = A->left; A-& ...
- AVL树旋转
什么是AVL树? AVL树是带有平衡条件的二叉查找树,一颗AVL树首先是二叉查收树(每个节点如果有左子树或右子树,那么左子树中数据小于该节点数据,右子树数据大于该节点数据),其次,AVL树必须满足平衡 ...
- (精)AVL树旋转共8种情况(涵盖所有考研的范围)
- PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...
- AVL树的插入与删除
AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1 ...
- 详解什么是平衡二叉树(AVL)(修订补充版)
详解什么是平衡二叉树(AVL)(修订补充版) 前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查 ...
- 什么是平衡二叉树(AVL)
前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都 ...
- AVL树总结
定义:一棵AVL树或者是空树,或者是具有下列性质的二叉搜索树:它的左子树和右子树都是AVL树,且左右子树的高度之差的绝对值不超过1 AVL树失衡旋转总结: 假如以T为根的子树失衡.定义平衡因子为 H( ...
- AVL树(平衡二叉树)
定义及性质 AVL树:AVL树是一颗自平衡的二叉搜索树. AVL树具有以下性质: 根的左右子树的高度只差的绝对值不能超过1 根的左右子树都是 平衡二叉树(AVL树) 百度百科: 平衡二叉搜索树(Sel ...
随机推荐
- css/js online online code editor/formator/debuger
http://cssdeck.com/labs http://jsfiddle.net/ http://fiddle.jshell.net/ support console http://plnkr ...
- C#中的委托与事件 笔记
1.委托是类型安全的回调函数,是将方法作为方法参数.委托可以注册多个方法:委托就是一个 multicastdelegate类,可以通过=赋值,+=添加方法(对象方法与静态方法),内部使用Delega ...
- oracle 删除用户,表空间;循环删除表
select * from dba_tablespaces 说明:查看所有表空间 ----------------------------------------------------------- ...
- 3640: JC的小苹果 - BZOJ
让我们继续JC和DZY的故事.“你是我的小丫小苹果,怎么爱你都不嫌多!”“点亮我生命的火,火火火火火!”话说JC历经艰辛来到了城市B,但是由于他的疏忽DZY偷走了他的小苹果!没有小苹果怎么听歌!他发现 ...
- c++ 关于换行符
windows: \r\n linux: \n mac: \r http://blog.chinaunix.net/uid-12706763-id-10830.html 不同的OS有不同的换行符: O ...
- 使用XAMPP本地安装Wordpress博客
最近一直在研究博客,也知道了大名鼎鼎的wordpress,因此也希望动手尝试一下,看看跟网站提供的博客有何区别. 第一个问题:能什么安装wordPress,能否用tocmat? 虽然问题很可笑,但是之 ...
- 在Eclipse中使用Propertites Editor插件来解决property文件中文显示乱码
在一般情况下,propertites文件在eclipse中的显示中文一直显示乱码,想要解决这个问题,需要通过在eclipse中安装一个Propertites Editor插件来进行解决. 在Eclip ...
- 解决Tomcat 7遇到StackOverflowError的异常
参考网址:http://qingyuexiao.iteye.com/blog/1886059 前言:在写此博客前,首先感谢姚双琪.林瑞丰.网友qingyuexiao的倾囊相助!此博文不过是笔者对于他们 ...
- LAMP安装配置过程
Mysql ./configure --prefix=/usr/local/mysql (注意/configure前有“.”,是用来检测你的安装平台的目标特征的,prefix是安装路径) #make ...
- 【BZOJ】【2693】JZPTAB
莫比乌斯反演 PoPoQQQ讲义第5题,是BZOJ 2154的升级版(多次询问) 题解:http://blog.csdn.net/popoqqq/article/details/42078725 WA ...