在Kafak中国社区的qq群中,这个问题被提及的比例是相当高的,这也是Kafka用户最常碰到的问题之一。本文结合Kafka源码试图对该问题相关的因素进行探讨。希望对大家有所帮助。
 
怎么确定分区数?
    “我应该选择几个分区?”——如果你在Kafka中国社区的群里,这样的问题你会经常碰到的。不过有些遗憾的是,我们似乎并没有很权威的答案能够解答这样的问题。其实这也不奇怪,毕竟这样的问题通常都是没有固定答案的。Kafka官网上标榜自己是"high-throughput distributed messaging system",即一个高吞吐量的分布式消息引擎。那么怎么达到高吞吐量呢?Kafka在底层摒弃了Java堆缓存机制,采用了操作系统级别的页缓存,同时将随机写操作改为顺序写,再结合Zero-Copy的特性极大地改善了IO性能。但是,这只是一个方面,毕竟单机优化的能力是有上限的。如何通过水平扩展甚至是线性扩展来进一步提升吞吐量呢? Kafka就是使用了分区(partition),通过将topic的消息打散到多个分区并分布保存在不同的broker上实现了消息处理(不管是producer还是consumer)的高吞吐量。
    Kafka的生产者和消费者都可以多线程地并行操作,而每个线程处理的是一个分区的数据。因此分区实际上是调优Kafka并行度的最小单元。对于producer而言,它实际上是用多个线程并发地向不同分区所在的broker发起Socket连接同时给这些分区发送消息;而consumer呢,同一个消费组内的所有consumer线程都被指定topic的某一个分区进行消费(具体如何确定consumer线程数目我们后面会详细说明)。所以说,如果一个topic分区越多,理论上整个集群所能达到的吞吐量就越大。
    但分区是否越多越好呢?显然也不是,因为每个分区都有自己的开销:
一、客户端/服务器端需要使用的内存就越多
    先说说客户端的情况。Kafka 0.8.2之后推出了Java版的全新的producer,这个producer有个参数batch.size,默认是16KB。它会为每个分区缓存消息,一旦满了就打包将消息批量发出。看上去这是个能够提升性能的设计。不过很显然,因为这个参数是分区级别的,如果分区数越多,这部分缓存所需的内存占用也会更多。假设你有10000个分区,按照默认设置,这部分缓存需要占用约157MB的内存。而consumer端呢?我们抛开获取数据所需的内存不说,只说线程的开销。如果还是假设有10000个分区,同时consumer线程数要匹配分区数(大部分情况下是最佳的消费吞吐量配置)的话,那么在consumer client就要创建10000个线程,也需要创建大约10000个Socket去获取分区数据。这里面的线程切换的开销本身已经不容小觑了。
    服务器端的开销也不小,如果阅读Kafka源码的话可以发现,服务器端的很多组件都在内存中维护了分区级别的缓存,比如controller,FetcherManager等,因此分区数越多,这种缓存的成本越久越大。
二、文件句柄的开销
    每个分区在底层文件系统都有属于自己的一个目录。该目录下通常会有两个文件: base_offset.log和base_offset.index。Kafak的controller和ReplicaManager会为每个broker都保存这两个文件句柄(file handler)。很明显,如果分区数越多,所需要保持打开状态的文件句柄数也就越多,最终可能会突破你的ulimit -n的限制。
三、降低高可用性
    Kafka通过副本(replica)机制来保证高可用。具体做法就是为每个分区保存若干个副本(replica_factor指定副本数)。每个副本保存在不同的broker上。期中的一个副本充当leader 副本,负责处理producer和consumer请求。其他副本充当follower角色,由Kafka controller负责保证与leader的同步。如果leader所在的broker挂掉了,contorller会检测到然后在zookeeper的帮助下重选出新的leader——这中间会有短暂的不可用时间窗口,虽然大部分情况下可能只是几毫秒级别。但如果你有10000个分区,10个broker,也就是说平均每个broker上有1000个分区。此时这个broker挂掉了,那么zookeeper和controller需要立即对这1000个分区进行leader选举。比起很少的分区leader选举而言,这必然要花更长的时间,并且通常不是线性累加的。如果这个broker还同时是controller情况就更糟了。
  说了这么多“废话”,很多人肯定已经不耐烦了。那你说到底要怎么确定分区数呢?答案就是:视情况而定。基本上你还是需要通过一系列实验和测试来确定。当然测试的依据应该是吞吐量。虽然LinkedIn这篇文章做了Kafka的基准测试,但它的结果其实对你意义不大,因为不同的硬件、软件、负载情况测试出来的结果必然不一样。我经常碰到的问题类似于,官网说每秒能到10MB,为什么我的producer每秒才1MB? —— 且不说硬件条件,最后发现他使用的消息体有1KB,而官网的基准测试是用100B测出来的,因此根本没有可比性。不过你依然可以遵循一定的步骤来尝试确定分区数:创建一个只有1个分区的topic,然后测试这个topic的producer吞吐量和consumer吞吐量。假设它们的值分别是Tp和Tc,单位可以是MB/s。然后假设总的目标吞吐量是Tt,那么分区数 =  Tt / max(Tp, Tc)
    Tp表示producer的吞吐量。测试producer通常是很容易的,因为它的逻辑非常简单,就是直接发送消息到Kafka就好了。Tc表示consumer的吞吐量。测试Tc通常与应用的关系更大, 因为Tc的值取决于你拿到消息之后执行什么操作,因此Tc的测试通常也要麻烦一些。
    另外,Kafka并不能真正地做到线性扩展(其实任何系统都不能),所以你在规划你的分区数的时候最好多规划一下,这样未来扩展时候也更加方便。
 
消息-分区的分配
默认情况下,Kafka根据传递消息的key来进行分区的分配,即hash(key) % numPartitions,如下图所示:
def partition(key: Any, numPartitions: Int): Int = {
Utils.abs(key.hashCode) % numPartitions
}

  这就保证了相同key的消息一定会被路由到相同的分区。如果你没有指定key,那么Kafka是如何确定这条消息去往哪个分区的呢?

if(key == null) {  // 如果没有指定key
val id = sendPartitionPerTopicCache.get(topic) // 先看看Kafka有没有缓存的现成的分区Id
id match {
case Some(partitionId) =>
partitionId // 如果有的话直接使用这个分区Id就好了
case None => // 如果没有的话,
val availablePartitions = topicPartitionList.filter(_.leaderBrokerIdOpt.isDefined) //找出所有可用分区的leader所在的broker
if (availablePartitions.isEmpty)
throw new LeaderNotAvailableException("No leader for any partition in topic " + topic)
val index = Utils.abs(Random.nextInt) % availablePartitions.size // 从中随机挑一个
val partitionId = availablePartitions(index).partitionId
sendPartitionPerTopicCache.put(topic, partitionId) // 更新缓存以备下一次直接使用
partitionId
}
}

  可以看出,Kafka几乎就是随机找一个分区发送无key的消息,然后把这个分区号加入到缓存中以备后面直接使用——当然了,Kafka本身也会清空该缓存(默认每10分钟或每次请求topic元数据时)

如何设定consumer线程数
    我个人的观点,如果你的分区数是N,那么最好线程数也保持为N,这样通常能够达到最大的吞吐量。超过N的配置只是浪费系统资源,因为多出的线程不会被分配到任何分区。让我们来看看具体Kafka是如何分配的。
    topic下的一个分区只能被同一个consumer group下的一个consumer线程来消费,但反之并不成立,即一个consumer线程可以消费多个分区的数据,比如Kafka提供的ConsoleConsumer,默认就只是一个线程来消费所有分区的数据。——其实ConsoleConsumer可以使用通配符的功能实现同时消费多个topic数据,但这和本文无关。
    再讨论分配策略之前,先说说KafkaStream——它是consumer的关键类,提供了遍历方法用于consumer程序调用实现数据的消费。其底层维护了一个阻塞队列,所以在没有新消息到来时,consumer是处于阻塞状态的,表现出来的状态就是consumer程序一直在等待新消息的到来。——你当然可以配置成带超时的consumer,具体参看参数consumer.timeout.ms的用法。
    下面说说Kafka提供的两种分配策略: range和roundrobin,由参数partition.assignment.strategy指定,默认是range策略。本文只讨论range策略。所谓的range其实就是按照阶段平均分配。举个例子就明白了,假设你有10个分区,P0 ~ P9,consumer线程数是3, C0 ~ C2,那么每个线程都分配哪些分区呢?
 
C0 消费分区 0, 1, 2, 3
C1 消费分区 4, 5, 6
C2 消费分区 7, 8, 9
  
具体算法就是:
val nPartsPerConsumer = curPartitions.size / curConsumers.size // 每个consumer至少保证消费的分区数
val nConsumersWithExtraPart = curPartitions.size % curConsumers.size // 还剩下多少个分区需要单独分配给开头的线程们
...
for (consumerThreadId <- consumerThreadIdSet) { // 对于每一个consumer线程
val myConsumerPosition = curConsumers.indexOf(consumerThreadId) //算出该线程在所有线程中的位置,介于[0, n-1]
assert(myConsumerPosition >= 0)
// startPart 就是这个线程要消费的起始分区数
val startPart = nPartsPerConsumer * myConsumerPosition + myConsumerPosition.min(nConsumersWithExtraPart)
// nParts 就是这个线程总共要消费多少个分区
val nParts = nPartsPerConsumer + (if (myConsumerPosition + 1 > nConsumersWithExtraPart) 0 else 1)
...
}

针对于这个例子,nPartsPerConsumer就是10/3=3,nConsumersWithExtraPart为10%3=1,说明每个线程至少保证3个分区,还剩下1个分区需要单独分配给开头的若干个线程。这就是为什么C0消费4个分区,后面的2个线程每个消费3个分区,具体过程详见下面的Debug截图信息:

 ctx.myTopicThreadIds
nPartsPerConsumer = 10 / 3  = 3
nConsumersWithExtraPart = 10 % 3 = 1
第一次:
myConsumerPosition = 1
startPart = 1 * 3 + min(1, 1) = 4 ---也就是从分区4开始读
nParts = 3 + (if (1 + 1 > 1) 0 else 1) = 3 读取3个分区, 即4,5,6
第二次:
myConsumerPosition = 0
startPart = 3 * 0 + min(1, 0) =0  --- 从分区0开始读
nParts = 3 + (if (0 + 1 > 1) 0 else 1) = 4 读取4个分区,即0,1,2,3
第三次:
myConsumerPosition = 2
startPart = 3 * 2 + min(2, 1) = 7 --- 从分区7开始读
nParts = 3 + if (2 + 1 > 1) 0 else 1) = 3 读取3个分区,即7, 8, 9
至此10个分区都已经分配完毕
 
说到这里,经常有个需求就是我想让某个consumer线程消费指定的分区而不消费其他的分区。坦率来说,目前Kafka并没有提供自定义分配策略。做到这点很难,但仔细想一想,也许我们期望Kafka做的事情太多了,毕竟它只是个消息引擎,在Kafka中加入消息消费的逻辑也许并不是Kafka该做的事情。

【原创】如何确定Kafka的分区数、key和consumer线程数的更多相关文章

  1. 如何确定Kafka的分区数、key和consumer线程数

    [原创]如何确定Kafka的分区数.key和consumer线程数   在Kafak中国社区的qq群中,这个问题被提及的比例是相当高的,这也是Kafka用户最常碰到的问题之一.本文结合Kafka源码试 ...

  2. 【转】如何确定Kafka的分区数、key和consumer线程数

    文章来源:http://www.cnblogs.com/huxi2b/p/4583249.html -------------------------------------------------- ...

  3. 【原创】开发Kafka通用数据平台中间件

    开发Kafka通用数据平台中间件 (含本次项目全部代码及资源) 目录: 一. Kafka概述 二. Kafka启动命令 三.我们为什么使用Kafka 四. Kafka数据平台中间件设计及代码解析 五. ...

  4. Apache Samza流处理框架介绍——kafka+LevelDB的Key/Value数据库来存储历史消息+?

    转自:http://www.infoq.com/cn/news/2015/02/apache-samza-top-project Apache Samza是一个开源.分布式的流处理框架,它使用开源分布 ...

  5. 【原创】谈谈redis的热key问题如何解决

    引言 讲了几天的数据库系列的文章,大家一定看烦了,其实还没讲完...(以下省略一万字). 今天我们换换口味,来写redis方面的内容,谈谈热key问题如何解决. 其实热key问题说来也很简单,就是瞬间 ...

  6. kafka如何防止key相同的消息并发消费

    最开始,我认为只用把消费者设置为单线程消费,就可以避免并发问题. 因为同一个key,分区一定相同,那么就只会被同一个消费者消费,消费者又是单线程,这样就避免了并发问题 后面发现,上述的方式没有办法处理 ...

  7. springboot kafka集成(实现producer和consumer)

    本文介绍如何在springboot项目中集成kafka收发message. 1.先解决依赖 springboot相关的依赖我们就不提了,和kafka相关的只依赖一个spring-kafka集成包 &l ...

  8. Apache Kafka - KIP-42: Add Producer and Consumer Interceptors

    kafka 0.10.0.0 released   Interceptors的概念应该来自flume 参考,http://blog.csdn.net/xiao_jun_0820/article/det ...

  9. kafka producer自定义partitioner和consumer多线程

    为了更好的实现负载均衡和消息的顺序性,Kafka Producer可以通过分发策略发送给指定的Partition.Kafka Java客户端有默认的Partitioner,平均的向目标topic的各个 ...

随机推荐

  1. javascript工厂模式和构造函数模式创建对象

    一.工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程(本书后面还将讨论其他设计模式及其在JavaScript 中的实现).考虑到在ECMAScript 中无法创 ...

  2. UWP开发之Mvvmlight实践八:为什么事件注销处理要写在OnNavigatingFrom中

    前一段开发UWP应用的时候因为系统返回按钮事件(SystemNavigationManager.GetForCurrentView().BackRequested)浪费了不少时间.现象就是在手机版的详 ...

  3. potrace源码分析一

    1 简介 potrace是由Dalhousie University的Peter Selinger开发一款位图轮廓矢量化软件,该软件源码是可以公开下载的,详细见项目主页:http://potrace. ...

  4. C#反序列化XML异常:在 XML文档(0, 0)中有一个错误“缺少根元素”

    Q: 在反序列化 Xml 字符串为 Xml 对象时,抛出如下异常. 即在 XML文档(0, 0)中有一个错误:缺少根元素. A: 首先看下代码: StringBuilder sb = new Stri ...

  5. EC笔记:第4部分:21、必须返回对象时,别返回引用

    使用应用可以大幅减少构造函数与析构函数的调用次数,但是引用不可以滥用. 如下: struct St { int a; }; St &func(){ St t; return t; } 在返回t ...

  6. 使用HTML5的cavas实现的一个画板

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <meta http-e ...

  7. Android—万能ListView适配器

    ListView是开发中最常用的控件了,但是总是会写重复的代码,浪费时间又没有意义. 最近参考一些资料,发现一个万能ListView适配器,代码量少,节省时间,总结一下分享给大家. 首先有一个自定义的 ...

  8. centos7 安装时候检测不到空余硬盘的解决办法

    我是用U盘装的centos,在进行硬盘规划时,看到硬盘的可用空间太少 这是因为我的硬盘以前装的是windows系统,硬盘几乎都已经被windows 操作系统给使用了,剩余空间也只会是windows用剩 ...

  9. Hilbert-Huang Transform(希尔伯特-黄变换)

    在我们正式开始讲解Hilbert-Huang Transform之前,不妨先来了解一下这一伟大算法的两位发明人和这一算法的应用领域 Section I 人物简介 希尔伯特:公认的数学界“无冕之王”,1 ...

  10. 【译】Meteor 新手教程:在排行榜上添加新特性

    原文:http://danneu.com/posts/6-meteor-tutorial-for-fellow-noobs-adding-features-to-the-leaderboard-dem ...