The Socket API, Part 3: Concurrent Servers
转:http://www.linuxforu.com/2011/10/socket-api-part-3-concurrent-servers/
By Pankaj Tanwar on October 1, 2011 in Coding, Developers · 2 Comments
Welcome to another dose of socket programming! Till now, we’ve created servers that are capable of creating connections with multiple clients [Part 1 & Part 2], but the problem is that the server will communicate with only one client at any point in time. This is because there is only one socket descriptor, cfd
, created to communicate with a client — and all connections will wait on the same descriptor. Now, let’s use the fork()
system call to fork a copy of the server for each client.
Here is the code included from the previous article. This time it is for IPv4…
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
#include <stdio.h> #include <unistd.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <signal.h> int main() { int sfd, cfd; socklen_t len; char ch, buff[INET_ADDRSTRLEN]; struct sockaddr_in saddr, caddr; sfd= socket(AF_INET, SOCK_STREAM, 0); saddr.sin_family=AF_INET; saddr.sin_addr.s_addr=htonl(INADDR_ANY); saddr.sin_port=htons(1205); bind(sfd, ( struct sockaddr *)&saddr, sizeof (saddr)); listen(sfd, 5); signal (SIGCHLD, SIG_IGN); while (1) { printf ( "Server waiting\n" ); len= sizeof (caddr); cfd=accept(sfd, ( struct sockaddr *)&caddr, &len); if ( fork() == 0) { printf ( "Child Server Created Handling connection with %s\n" , inet_ntop(AF_INET, &caddr.sin_addr, buff, sizeof (buff))); close(sfd); if (read(cfd, &ch, 1)<0) perror ( "read" ); while ( ch != EOF) { if ((ch>= 'a' && ch<= 'z' ) || (ch>= 'A' && ch<= 'Z' )) ch^=0x20; /* EXORing 6th bit will result in change in case */ if (write(cfd, &ch, 1)<0) perror ( "write" ); if (read(cfd, &ch, 1)<0) perror ( "read" ); } close(cfd); return 0; } close(cfd); } } |
Let’s see what we’ve done here. At line 23, after getting the socket descriptor cfd
from the call to accept, we forked the server. The child process (where pid==0
) closes the listening descriptor with close(sfd)
, does the work the server is intended to do, and when finished, closes the descriptor and returns (see lines 27-39).
The server, on the other hand, where pid>0
, just closes the cfd
(line 39), and is again ready to accept more connections. Thus, for each incoming connection, a new server process will be created.
Another method of doing this is using threads, but we’re not getting into that right now.
Now, compile, run and see the server running and handling multiple clients. See Figure 1 — I’m running the server on a network now (;) though these clients are VirtualBox running VMs with Backtrack (192.168.1.19) and Arch (192.168.1.4), and Android phone running ConnectBot to create a TCP connection.
Figure 1: Server screen
Also run netstat -a | grep 1205
to check for current network connections; I’ve greped 1205, our port, to show only connections to our server (see Figure 2).
Figure 2: Output of netstat
We can also see the parent server process LISTENing and the ESTABLISHED connections, with IPs and ports.
We added signal(SIGCHLD, SIG_IGN)
to the code to prevent child processes going into a zombie state. A child process, when it finishes (a clean termination or killed by some signal), returns the exit status to its parent process, which is notified by the SIGCHLD
signal sent by the system. If the parent doesn’t handle this signal, the child process still uses some memory, and remains in a zombie state. If the parent finishes before the child, or doesn’t collect the status and terminates, the status will be provided to the parent of all processes, i.e., init
with pid 1
.
Let’s examine some code from the signal()
man page:
#include <signal.h> typedef void (*sighandler_t)( int ); sighandler_t signal ( int signum, sighandler_t handler); |
signal()
sets the disposition of the signal signum
to handler, which is either SIG_IGN
, SIG_DFL
, or the address of a programmer-defined function (a “signal handler”). It also indicates that the behaviour of signal()
differs among different Linux and UNIX versions, and tells us to usesigaction()
instead.
The problem is whether the blocked system call, after running the signal handler, will be restarted or not. We can look at this later, when we write our own signal handler — or just go check the sigaction
structure in the man pages.
Now, just receive the signal and ignore it by setting handler to SIG_IGN
. This will not let the child enter a zombie state. What if the parent finishes before the child (though not the case here, because the server is in an infinite loop)? In that case, the parent can wait for the child usingwait()
or waitpid()
calls, of which waitpid()
is preferred.
These system calls wait for a state change in the child, such as the child being terminated or stopped by a signal, or resumed by a signal (check the man pages).
A little science
Now, before moving further, let’s talk about TCP here since better code requires a sound understanding of the basics.
In Figure 3, the rectangles represent the states, and the edges, the transitions.
Figure 3: TCP state diagram
We need to visualise the server and client in the diagram. Two edges come out of the CLOSED state; one is Active Open. This transition occurs when a client sends a SYN packet to the server, and the system is initiating the connection. Another is Passive Open, where the server enters the listen state and waits for connections.
First, from the client side, after the SYN is sent the client enters the SYN_SENT
state. Now, after receiving the SYN from the server and sending SYN and ACK, it transitions to ESTABLISHED. From the ESTABLISHED state (where communication takes place), sending a FIN will initiate an Active Close to terminate the connection, and enter the FIN_WAIT_1
state. Receiving ACK will move it to the FIN_WAIT_2
state.
Receiving the FIN from the server will result in sending the ACK, and going to the TIME_WAIT
state. In this state, the system waits for twice the MSL (maximum segment lifetime); the recommended value in RFC 1337 is 120 seconds, Linux implements 60 seconds. This state helps reliable termination ofconnections in case of lost packets, and allows old duplicate segments to expire in the network. Finally, it goes to the CLOSED state.
For the server, passive open is the LISTEN state. Receiving a SYN results in sending SYN and ACK, and going to the SYN_RCVD
state. Receiving an ACK will take the server to the ESTABLISHED state for data communication. Then, receiving a FIN will result in sending an ACK, and will initiate the passive close and it going to the CLOSE_WAIT
state.
After the operation completes, the server sends the FIN, and transitions to the LAST_ACK
state. On receiving the ACK, it will terminate the connection and go to the CLOSED state.
Here we can see the “ThreeHandshake” — the exchange of three packets to establish a TCP connection. It is initiated when the client calls connect()
. Packet 1 is SYN x from client to server; Packet 2 is ACK x+1 and SYN y from server to client; and Packet 3 is ACK y+1 from client to server. Here, x is the sequence number from the client, and y the sequence number from the server.
To terminate the connection, we need four packets. The client calls close()
to initiate termination: Packet 1 is FIN m from client to server; and Packet 2 is ACK m+1 from server to client. Now, the server finishes the operation, and then calls close()
and sends its FIN n. The client sends ACK n+1 to terminate the connection.
Here’s where I close the connection, even though it was short this time! Next month, I’ll be back with a new connection to socket programming… you can now ACK my FIN!
The Socket API, Part 3: Concurrent Servers的更多相关文章
- Creating Your Own Server: The Socket API, Part 1
转:http://www.linuxforu.com/2011/08/creating-your-own-server-the-socket-api-part-1/ By Pankaj Tanwar ...
- 刨根问底系列(3)——关于socket api的原子操作性和线程安全性的探究和实验测试(多线程同时send,write)
多个线程对同一socket同时进行send操作的结果 1. 概览 1.1 起因 自己写的项目里,为了保证连接不中断,我起一个线程专门发送心跳包保持连接,那这个线程在send发送数据时,可能会与主线程中 ...
- Creating Your Own Server: The Socket API, Part 2
转:http://www.linuxforu.com/2011/09/creating-your-own-server-the-socket-api-part-2/ By Pankaj Tanwar ...
- UNIX网络编程——SOCKET API和TCP STATE的对应关系_三次握手_四次挥手及TCP延迟确认
在socket系统调用中,如何完成三次握手和四次挥手: SOCK_DGRAM即UDP中的connect操作知识在内核中注册对方机器的IP和PORT信息,并没有建立连接的过程,即没有发包,close也不 ...
- c/c++ socket API 调用后的错误判断 perror errno
socket API 调用后的错误判断 perror errno 调用完socket API后,需要判断调用是否成功与失败.如果失败,会自动设置errno(是个整数), 并且用perror可以打印出具 ...
- JNI 和 socket api
1.JavaVM 和 JNIEnvJNIEnv是一个与线程相关的变量,不同线程的JNIEnv彼此独立.JavaVM是虚拟机在JNI层的代表,在一个虚拟机进程中只有一个JavaVM,因此该进程的所有线程 ...
- LwIP - raw/callback API、协议栈API(sequential API)、BSD API(或者说 SOCKET API)
1.使用raw/callback API编程,用户编程的方法是向内核注册各种自定义的回调函数,回调函数是与内核实现交换的唯一方式. recv_udp, accept_function, sent_tc ...
- socket编程 ------ BSD socket API
伯克利套接字(Berkeley sockets),也称为BSD Socket.伯克利套接字的应用编程接口(API)是采用C语言的进程间通信的库,经常用在计算机网络间的通信. BSD Socket的应用 ...
- Python Socket API 笔记
将上节中的C#该成Python版的容易程度大大超出了我的意料之外.从来没有发现,仅仅用灰尘简单的几句话就实现了该程序的主要功能,可见python的简易和强大之处.这里先对SocketAPI 做一下总结 ...
随机推荐
- how to javafx hide background header of a tableview?
http://stackoverflow.com/questions/12324464/how-to-javafx-hide-background-header-of-a-tableview ———— ...
- log4j:ERROR LogMananger.repositorySelector was null likely due to error in class reloading, using NOPLoggerRepository.
The reason for the error is a new listener in Tomcat 6.0.24. You can fix this error by adding this l ...
- MSSQL 2005数据库可疑状态
今天早上打开进销存,提示链接失败,经过检查参数,网络.端口等各种情况,均没有发现问题,最后检查数据库本事的问题. 通过studio进去发现我的进销存数据变成了(可疑)状态,随机百度修复方法,修复方法还 ...
- .java 文件中只能定义一个public class 且与文件名相同
- Unity3d:使用uWebKit插件嵌入网页,网页中的flv视频无法播放
问题描述:unity3d程序,使用uWebKit插件嵌入网页,用来播放FLV视频,有的电脑可以正常播放,有的电脑在网页中播放不了ps:网页中的播放器用的是player.swf解决方案:是由于网页中的播 ...
- android: Incorrect line ending: found carriage return (\r) without corresponding newline (\n)
当报这种错误的时候:Incorrect line ending: found carriage return (\r) without corresponding newline (\n) 解决方法: ...
- 69道java Spring面试题和答案
http://www.jfox.info/69-dao-java-spring-mian-shi-ti-he-da-an 目录 Spring 概述 依赖注入 Spring beans Spring注解 ...
- xmlBean学习一
在文档中看到了xmlBean的出现,因为项目使用JMS,模块之间通过xml文件传递数据,就学一下xmlBean,java中还提供了DOM,SAX来解析xm,但也是比较麻烦的:而xmlbean则将xml ...
- eclipse下安装Extjs的插件spket
最近项目要用ext进行开发,所以这段时间开始学习ext. 我这里用的是ext3.0,eclipse3.5. 每次都要去查API,很烦,所以装个EXT提示的插件对初学者来说有很大的帮助. 假设你已经下载 ...
- Web网站压力测试工具
使用Microsoft Web Application Stress Tool对web进行压力测试 不错关于压力测试博客: http://blog.sina.com.cn/s/blog_5155e8d ...