转:http://www.linuxforu.com/2011/10/socket-api-part-3-concurrent-servers/

By Pankaj Tanwar on October 1, 2011 in CodingDevelopers · 2 Comments

In this part of the series, we will learn how to deal with multiple clients connected to the server.

Welcome to another dose of socket programming! Till now, we’ve created servers that are capable of creating connections with multiple clients [Part 1 & Part 2], but the problem is that the server will communicate with only one client at any point in time. This is because there is only one socket descriptor, cfd, created to communicate with a client — and all connections will wait on the same descriptor. Now, let’s use the fork() system call to fork a copy of the server for each client.

Here is the code included from the previous article. This time it is for IPv4…

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>
 
int main()
{
    int sfd, cfd;
    socklen_t len;
    char ch, buff[INET_ADDRSTRLEN];
    struct sockaddr_in saddr, caddr;
 
    sfd= socket(AF_INET, SOCK_STREAM, 0);
 
    saddr.sin_family=AF_INET;
    saddr.sin_addr.s_addr=htonl(INADDR_ANY);
    saddr.sin_port=htons(1205);
 
    bind(sfd, (struct sockaddr *)&saddr, sizeof(saddr));
 
    listen(sfd, 5);
    signal(SIGCHLD, SIG_IGN);
 
    while(1) {
        printf("Server waiting\n");
        len=sizeof(caddr);
        cfd=accept(sfd, (struct sockaddr *)&caddr, &len);
 
        if( fork() == 0) {
            printf("Child Server Created Handling connection with %s\n",
                inet_ntop(AF_INET, &caddr.sin_addr, buff, sizeof(buff)));
 
            close(sfd);
 
            if(read(cfd, &ch, 1)<0) perror("read");
 
            while( ch != EOF) {
                if((ch>='a' && ch<='z') || (ch>='A' && ch<='Z'))
                ch^=0x20;  
                    /* EXORing 6th bit will result in change in case */
 
                if(write(cfd, &ch, 1)<0) perror("write");
 
                if(read(cfd, &ch, 1)<0) perror("read");
            }
            close(cfd);
            return 0;
 
        }
 
        close(cfd);
    }
}

Let’s see what we’ve done here. At line 23, after getting the socket descriptor cfd from the call to accept, we forked the server. The child process (where pid==0) closes the listening descriptor with close(sfd), does the work the server is intended to do, and when finished, closes the descriptor and returns (see lines 27-39).

The server, on the other hand, where pid>0, just closes the cfd (line 39), and is again ready to accept more connections. Thus, for each incoming connection, a new server process will be created.

Another method of doing this is using threads, but we’re not getting into that right now.

Now, compile, run and see the server running and handling multiple clients. See Figure 1 — I’m running the server on a network now (;) though these clients are VirtualBox running VMs with Backtrack (192.168.1.19) and Arch (192.168.1.4), and Android phone running ConnectBot to create a TCP connection.

Figure 1: Server screen

Also run netstat -a | grep 1205 to check for current network connections; I’ve greped 1205, our port, to show only connections to our server (see Figure 2).

Figure 2: Output of netstat

We can also see the parent server process LISTENing and the ESTABLISHED connections, with IPs and ports.

We added signal(SIGCHLD, SIG_IGN) to the code to prevent child processes going into a zombie state. A child process, when it finishes (a clean termination or killed by some signal), returns the exit status to its parent process, which is notified by the SIGCHLD signal sent by the system. If the parent doesn’t handle this signal, the child process still uses some memory, and remains in a zombie state. If the parent finishes before the child, or doesn’t collect the status and terminates, the status will be provided to the parent of all processes, i.e., init with pid 1.

Let’s examine some code from the signal() man page:

#include &lt;signal.h&gt;
 
typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

signal() sets the disposition of the signal signum to handler, which is either SIG_IGNSIG_DFL, or the address of a programmer-defined function (a “signal handler”). It also indicates that the behaviour of signal() differs among different Linux and UNIX versions, and tells us to usesigaction() instead.

The problem is whether the blocked system call, after running the signal handler, will be restarted or not. We can look at this later, when we write our own signal handler — or just go check the sigaction structure in the man pages.

Now, just receive the signal and ignore it by setting handler to SIG_IGN. This will not let the child enter a zombie state. What if the parent finishes before the child (though not the case here, because the server is in an infinite loop)? In that case, the parent can wait for the child usingwait() or waitpid() calls, of which waitpid() is preferred.

These system calls wait for a state change in the child, such as the child being terminated or stopped by a signal, or resumed by a signal (check the man pages).

A little science

Now, before moving further, let’s talk about TCP here since better code requires a sound understanding of the basics.

In Figure 3, the rectangles represent the states, and the edges, the transitions.

Figure 3: TCP state diagram

We need to visualise the server and client in the diagram. Two edges come out of the CLOSED state; one is Active Open. This transition occurs when a client sends a SYN packet to the server, and the system is initiating the connection. Another is Passive Open, where the server enters the listen state and waits for connections.

First, from the client side, after the SYN is sent the client enters the SYN_SENT state. Now, after receiving the SYN from the server and sending SYN and ACK, it transitions to ESTABLISHED. From the ESTABLISHED state (where communication takes place), sending a FIN will initiate an Active Close to terminate the connection, and enter the FIN_WAIT_1 state. Receiving ACK will move it to the FIN_WAIT_2 state.

Receiving the FIN from the server will result in sending the ACK, and going to the TIME_WAITstate. In this state, the system waits for twice the MSL (maximum segment lifetime); the recommended value in RFC 1337 is 120 seconds, Linux implements 60 seconds. This state helps reliable termination ofconnections in case of lost packets, and allows old duplicate segments to expire in the network. Finally, it goes to the CLOSED state.

For the server, passive open is the LISTEN state. Receiving a SYN results in sending SYN and ACK, and going to the SYN_RCVD state. Receiving an ACK will take the server to the ESTABLISHED state for data communication. Then, receiving a FIN will result in sending an ACK, and will initiate the passive close and it going to the CLOSE_WAIT state.

After the operation completes, the server sends the FIN, and transitions to the LAST_ACK state. On receiving the ACK, it will terminate the connection and go to the CLOSED state.

Here we can see the “ThreeHandshake” — the exchange of three packets to establish a TCP connection. It is initiated when the client calls connect(). Packet 1 is SYN x from client to server; Packet 2 is ACK x+1 and SYN y from server to client; and Packet 3 is ACK y+1 from client to server. Here, x is the sequence number from the client, and y the sequence number from the server.

To terminate the connection, we need four packets. The client calls close() to initiate termination: Packet 1 is FIN m from client to server; and Packet 2 is ACK m+1 from server to client. Now, the server finishes the operation, and then calls close() and sends its FIN n. The client sends ACK n+1 to terminate the connection.

Here’s where I close the connection, even though it was short this time! Next month, I’ll be back with a new connection to socket programming… you can now ACK my FIN!

The Socket API, Part 3: Concurrent Servers的更多相关文章

  1. Creating Your Own Server: The Socket API, Part 1

    转:http://www.linuxforu.com/2011/08/creating-your-own-server-the-socket-api-part-1/ By Pankaj Tanwar  ...

  2. 刨根问底系列(3)——关于socket api的原子操作性和线程安全性的探究和实验测试(多线程同时send,write)

    多个线程对同一socket同时进行send操作的结果 1. 概览 1.1 起因 自己写的项目里,为了保证连接不中断,我起一个线程专门发送心跳包保持连接,那这个线程在send发送数据时,可能会与主线程中 ...

  3. Creating Your Own Server: The Socket API, Part 2

    转:http://www.linuxforu.com/2011/09/creating-your-own-server-the-socket-api-part-2/ By Pankaj Tanwar  ...

  4. UNIX网络编程——SOCKET API和TCP STATE的对应关系_三次握手_四次挥手及TCP延迟确认

    在socket系统调用中,如何完成三次握手和四次挥手: SOCK_DGRAM即UDP中的connect操作知识在内核中注册对方机器的IP和PORT信息,并没有建立连接的过程,即没有发包,close也不 ...

  5. c/c++ socket API 调用后的错误判断 perror errno

    socket API 调用后的错误判断 perror errno 调用完socket API后,需要判断调用是否成功与失败.如果失败,会自动设置errno(是个整数), 并且用perror可以打印出具 ...

  6. JNI 和 socket api

    1.JavaVM 和 JNIEnvJNIEnv是一个与线程相关的变量,不同线程的JNIEnv彼此独立.JavaVM是虚拟机在JNI层的代表,在一个虚拟机进程中只有一个JavaVM,因此该进程的所有线程 ...

  7. LwIP - raw/callback API、协议栈API(sequential API)、BSD API(或者说 SOCKET API)

    1.使用raw/callback API编程,用户编程的方法是向内核注册各种自定义的回调函数,回调函数是与内核实现交换的唯一方式. recv_udp, accept_function, sent_tc ...

  8. socket编程 ------ BSD socket API

    伯克利套接字(Berkeley sockets),也称为BSD Socket.伯克利套接字的应用编程接口(API)是采用C语言的进程间通信的库,经常用在计算机网络间的通信. BSD Socket的应用 ...

  9. Python Socket API 笔记

    将上节中的C#该成Python版的容易程度大大超出了我的意料之外.从来没有发现,仅仅用灰尘简单的几句话就实现了该程序的主要功能,可见python的简易和强大之处.这里先对SocketAPI 做一下总结 ...

随机推荐

  1. ld - linker

    [ld - linker] NAME ld -- linker SYNOPSIS ld files...  [options] [-o outputfile] DESCRIPTION The ld c ...

  2. vim插件开发初步

    [vim插件开发初步] 将如下代码存在helloworld.vim, 放在~/.vim/plugin目录下,插件即可生效.:w保存代码后, 用:source命令执行后,也可以使用Helloworld命 ...

  3. (转载)Java里快如闪电的线程间通讯

    转自(http://www.infoq.com/cn/articles/High-Performance-Java-Inter-Thread-Communications) 这个故事源自一个很简单的想 ...

  4. Java沙箱技术

    自从Java技术出现以来,有关Java平台的安全性及由Java技术发展所引发的新的安全性问题,引起了越来越多的关注.目前,Java已经大量应用在各个领域,研究Java的安全 性对于更好地使用Java具 ...

  5. 原生的AJAX写法,可以直接复制过来套用

    方法一: function createXMLHTTPRequest() { //1.创建XMLHttpRequest对象 //这是XMLHttpReuquest对象无部使用中最复杂的一步 //需要针 ...

  6. C++视频课程小结(2)

    C++远征之离港篇 章节介绍: 每章小结: 第一章:大致讲了一下本章会讲的内容:引用vs指针.const vs #define(这个我在C里都没用过).函数变得更强大.内存管理要小心之类的. 第二章: ...

  7. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  8. android adb服务启动不了解决办法

    当然还有可能是其它的原因,下面是一些解决办法的汇总 因为在对应的文件夹下找不到adb的问题,将android-sdk/platform-tools和android-sdk/tools都加到环境变量中去 ...

  9. PowerDesigner 表视图修改

    PowerDesigner中Table视图同时显示Code和Name,像下图这样的效果: 实现方法:Tools-Display Preference 转自:http://www.shaoqun.com ...

  10. 数据结构——图——最短路径D&F算法

    一.Dijkstra算法(贪心地求最短距离的算法) 在此算法中,我按照自己的理解去命名,理解起来会轻松一些. #define MAXSIZE 100 #define UNVISITED 0 #defi ...